Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space.
The term gimbal-lock can be misleading in the sense that none of the individual gimbals are actually restrained. All three gimbals can still rotate freely about their respective axes of suspension. Nevertheless, because of the parallel orientation of two of the gimbals' axes there is no gimbal available to accommodate rotation about one axis, leaving the suspended object effectively locked (i.e. unable to rotate) around that axis.
Gimbal
A gimbal is a ring that is suspended so it can rotate about an axis. Gimbals are typically nested one within another to accommodate rotation about multiple axes.
They appear in gyroscopes and in inertial measurement units to allow the inner gimbal's orientation to remain fixed while the outer gimbal suspension assumes any orientation. In compasses and flywheel energy storage mechanisms they allow objects to remain upright. They are used to orient thrusters on rockets.
Some coordinate systems in mathematics behave as if there were real gimbals used to measure the angles, notably Euler angles.
For cases of three or fewer nested gimbals, gimbal lock inevitably occurs at some point in the system due to properties of covering spaces.
While only two specific orientations produce exact gimbal lock, practical mechanical gimbals encounter difficulties near those orientations. When a set of gimbals is close to the locked configuration, small rotations of the gimbal platform require large motions of the surrounding gimbals. Although the ratio is infinite only at the point of gimbal lock, the practical speed and acceleration limits of the gimbals—due to inertia (resulting from the mass of each gimbal ring), bearing friction, the flow resistance of air or other fluid surrounding the gimbals (if they are not in a vacuum), and other physical and engineering factors—limit the motion of the platform close to that point.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in 3-dimensional linear algebra. Classic Euler angles usually take the inclination angle in such a way that zero degrees represent the vertical orientation. Alternative forms were later introduced by Peter Guthrie Tait and George H.
Spacecraft attitude control is the process of controlling the orientation of a spacecraft (vehicle or satellite) with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle attitude requires sensors to measure vehicle orientation, actuators to apply the torques needed to orient the vehicle to a desired attitude, and algorithms to command the actuators based on (1) sensor measurements of the current attitude and (2) specification of a desired attitude.
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Explains the methods and strategies for initial alignment in strapdown inertial navigation systems, including the use of direct observations and estimation techniques.
Dynamic control strategies, such as dynamic induction control [1], were reported as efficient and beneficial in improving wind farm power production. A recent work based on computational fluid dynamics simulation [2] shows that by controlling wake meanderi ...
2023
In this thesis, we explore the best practice of simulating the wakes of the turbines under active yaw control (AYC) using large-eddy simulation (LES). In the first study, we validate the blade-element actuator disk model (ADM-BE) for a yawed wind turbine. ...
Human hands play a very important role in daily object manipulation. Current prosthetic hands are capable of mimicking most functions of the human hand, but how to interact with prosthetic hands based on human intentions remains an open problem. In this ar ...