**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Complex geometry

Summary

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Complex geometry sits at the intersection of algebraic geometry, differential geometry, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties through the minimal model program and the construction of moduli spaces sets the field apart from differential geometry, where the classification of possible smooth manifolds is a significantly harder problem. Additionally, the extra structure of complex geometry allows, especially in the compact setting, for global analytic results to be proven with great success, including Shing-Tung Yau's proof of the Calabi conjecture, the Hitchin–Kobayashi correspondence, the nonabelian Hodge correspondence, and existence results for Kähler–Einstein metrics and constant scalar curvature Kähler metrics. These results often feed back into complex algebraic geometry, and for example recently the classification of Fano manifolds using K-stability has benefited tremendously both from techniques in analysis and in pure birational geometry.
Complex geometry has significant applications to theoretical physics, where it is essential in understanding conformal field theory, string theory, and mirror symmetry.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (44)

Related courses (32)

Related concepts (39)

Related units (3)

Related publications (365)

Related lectures (139)

MATH-410: Riemann surfaces

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex

MATH-473: Complex manifolds

The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.

MATH-658: Vanishing cycles and perverse sheaves

This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Function of several complex variables

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables (and analytic space), which the Mathematics Subject Classification has as a top-level heading. As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables zi.

Manifold

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.

Geometric Projects Review

Reviews geometric projects, exploring varying panel sizes and complex geometries.

Topology of Riemann Surfaces

Covers the topology of Riemann surfaces, focusing on orientation and orientability.

Additive Manufacturing: Generalities

Explores the generalities of additive manufacturing processes, including benefits, disadvantages, and historical milestones.

The integration of the new plasma position reflectometer in the RFX-mod2 experiment (the upgraded version of the previous RFX-mod that operated until 2015) is presented in this contribution. Particular attention has been devoted to the high field side subs ...

Josephine Anna Eleanor Hughes, Max Mirko Polzin

Glacial moulins (cylindrical meltwater drainage shafts) provide valuable insights into glacier dynamics, but are inaccessible and hazardous environments for humans to study. Exploring them using passive sensor probes has revealed their complex geometry, wh ...

Jean-Philippe Hogge, Francisco Sanchez

The ITER Electron Cyclotron Resonance Heating and Current Drive (ECRH&CD) system relies on 1 MW 170 GHz Gyrotrons to provide the mm-wave power needed for plasma heating, current drive, and magneto-hydrodynamic control. The design and modeling of the contro ...