Borel hierarchyIn mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory. One common use of the Borel hierarchy is to prove facts about the Borel sets using transfinite induction on rank. Properties of sets of small finite ranks are important in measure theory and analysis.
Post's theoremIn computability theory Post's theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees. Arithmetical hierarchy#Relation to Turing machines The statement of Post's theorem uses several concepts relating to definability and recursion theory. This section gives a brief overview of these concepts, which are covered in depth in their respective articles. The arithmetical hierarchy classifies certain sets of natural numbers that are definable in the language of Peano arithmetic.
PointclassIn the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a point is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of definability property; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.
True arithmeticIn mathematical logic, true arithmetic is the set of all true first-order statements about the arithmetic of natural numbers. This is the theory associated with the standard model of the Peano axioms in the language of the first-order Peano axioms. True arithmetic is occasionally called Skolem arithmetic, though this term usually refers to the different theory of natural numbers with multiplication. The signature of Peano arithmetic includes the addition, multiplication, and successor function symbols, the equality and less-than relation symbols, and a constant symbol for 0.
Arithmetical setIn mathematical logic, an arithmetical set (or arithmetic set) is a set of natural numbers that can be defined by a formula of first-order Peano arithmetic. The arithmetical sets are classified by the arithmetical hierarchy. The definition can be extended to an arbitrary countable set A (e.g. the set of n-tuples of integers, the set of rational numbers, the set of formulas in some formal language, etc.) by using Gödel numbers to represent elements of the set and declaring a subset of A to be arithmetical if the set of corresponding Gödel numbers is arithmetical.