Summary
Molecular scale electronics, also called single-molecule electronics, is a branch of nanotechnology that uses single molecules, or nanoscale collections of single molecules, as electronic components. Because single molecules constitute the smallest stable structures imaginable, this miniaturization is the ultimate goal for shrinking electrical circuits. The field is often termed simply as "molecular electronics", but this term is also used to refer to the distantly related field of conductive polymers and organic electronics, which uses the properties of molecules to affect the bulk properties of a material. A nomenclature distinction has been suggested so that molecular materials for electronics refers to this latter field of bulk applications, while molecular scale electronics refers to the nanoscale single-molecule applications treated here. Conventional electronics have traditionally been made from bulk materials. Ever since their invention in 1958, the performance and complexity of integrated circuits has undergone exponential growth, a trend named Moore’s law, as feature sizes of the embedded components have shrunk accordingly. As the structures shrink, the sensitivity to deviations increases. In a few technology generations, the composition of the devices must be controlled to a precision of a few atoms for the devices to work. With bulk methods growing increasingly demanding and costly as they near inherent limits, the idea was born that the components could instead be built up atom by atom in a chemistry lab (bottom up) versus carving them out of bulk material (top down). This is the idea behind molecular electronics, with the ultimate miniaturization being components contained in single molecules. In single-molecule electronics, the bulk material is replaced by single molecules. Instead of forming structures by removing or applying material after a pattern scaffold, the atoms are put together in a chemistry lab.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
Related publications (36)
Related concepts (1)
Supramolecular chemistry
Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component.