Japanese mathematicsdenotes a distinct kind of mathematics which was developed in Japan during the Edo period (1603–1867). The term wasan, from wa ("Japanese") and san ("calculation"), was coined in the 1870s and employed to distinguish native Japanese mathematical theory from Western mathematics (洋算 yōsan). In the history of mathematics, the development of wasan falls outside the Western realm. At the beginning of the Meiji period (1868–1912), Japan and its people opened themselves to the West.
Indeterminate (variable)In mathematics, particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else except itself. It may be used as a placeholder in objects such as polynomials and formal power series. In particular: It does not designate a constant or a parameter of the problem. It is not an unknown that could be solved for. It is not a variable designating a function argument, or a variable being summed or integrated over. It is not any type of bound variable.
Elementary arithmeticElementary arithmetic is a branch of mathematics involving basic numerical operations, namely addition, subtraction, multiplication, and division. Due to its low level of abstraction, broad range of application, and being the foundation of all mathematics, elementary arithmetic is generally the first critical branch of mathematics to be taught in schools. Numerical digit Symbols called digits are used to represent the value of numbers in a numeral system. The most commonly used digits are the Arabic numerals (0 to 9).
ArithmeticaArithmetica (Ἀριθμητικά) is an Ancient Greek text on mathematics written by the mathematician Diophantus (200/214 AD-284/298 AD) in the 3rd century AD. It is a collection of 130 algebraic problems giving numerical solutions of determinate equations (those with a unique solution) and indeterminate equations. Equations in the book are presently called Diophantine equations. The method for solving these equations is known as Diophantine analysis. Most of the Arithmetica problems lead to quadratic equations.
FibonacciFibonacci (ˌfɪbəˈnɑːtʃi; also USˌfiːb-, fiboˈnattʃi; 1170 – 1240–50), also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano ('Leonardo the Traveller from Pisa'), was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages". The name he is commonly called, Fibonacci, was made up in 1838 by the Franco-Italian historian Guillaume Libri and is short for filius Bonacci ('son of Bonacci').
Cubic equationIn algebra, a cubic equation in one variable is an equation of the form in which a is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: algebraically: more precisely, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations, square roots and cube roots.
Division by zeroIn mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as , where a is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by 0, gives a (assuming ); thus, division by zero is undefined (a type of singularity). Since any number multiplied by zero is zero, the expression is also undefined; when it is the form of a limit, it is an indeterminate form.
GeometryGeometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Algebra over a fieldIn mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras.
Nested radicalIn algebra, a nested radical is a radical expression (one containing a square root sign, cube root sign, etc.) that contains (nests) another radical expression. Examples include which arises in discussing the regular pentagon, and more complicated ones such as Some nested radicals can be rewritten in a form that is not nested. For example, Another simple example, Rewriting a nested radical in this way is called denesting. This is not always possible, and, even when possible, it is often difficult.