Les concernent les méthodes et résultats mathématiques développés au Japon durant l’époque d'Edo (1603-1867). Le terme Wasan, de Wa signifiant « Japon » et San, « mathématiques », est un néologisme créé dans les années 1870 par opposition au terme yosan désignant les théories occidentales. Dans l’histoire des mathématiques, le développement des wasan n'entre pas dans le développement des théories occidentales et propose des solutions alternatives.
Exemple de polynôme à coefficients entiers, d'indéterminée . En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Par exemple, sur tout anneau intègre, le corps des fractions rationnelles, défini à l'aide de l'indéterminée X, diffère de la structure équivalente des fonctions rationnelles de la variable x.
L’arithmétique élémentaire regroupe les rudiments de la connaissance des nombres telle qu'elle est présentée dans l'enseignement des mathématiques. Elle commence avec la comptine numérique, autrement dit la suite des premiers entiers à partir de 1, apprise comme une liste ou une récitation et utilisée pour dénombrer de petites quantités. Viennent ensuite les opérations d'addition et de multiplication par le biais des tables d'addition et de multiplication.
Les Arithmétiques (Arithmetica) est une œuvre mathématique en grec due à Diophante d'Alexandrie, qui a eu une grande influence dans l'histoire des mathématiques. Elle aurait été écrite au de notre ère, selon l'hypothèse la plus courante chez les historiens, mais elle est difficile à dater. Elle se présente comme une liste de problèmes résolus, de nature que l'on pourrait qualifier aujourd'hui d'arithmétique ou algébrique : les problèmes se traduisent par des équations polynomiales portant sur des nombres rationnels positifs.
thumb|right|upright 1.32|Statue de Léonard de Pise, dans sa ville natale. Leonardo Fibonacci ou « Léonard de Pise » (vers 1170 à Pise - vers 1250) est un mathématicien italien connu notamment par la suite de Fibonacci. Ses travaux revêtent une importance considérable car ils sont le chainon apportant notamment la notation des chiffres indo-arabes aux mathématiques de l'Occident. L'homme est dénommé dans les manuscrits comme Leonardus Pisanus, « Léonard de Pise », ou encore Leonardus filius Bonacci, Leonardus Pisanus de filiis Bonacci et Leonardus Bigollus.
thumb|right|Une équation cubique admet au plus trois solutions réelles. En mathématiques, une équation cubique est une équation polynomiale de degré 3, de la forme ax + bx + cx + d = 0 avec a non nul, où les coefficients a, b, c et d sont en général supposés réels ou complexes. Les équations cubiques étaient connues des anciens Babyloniens, Grecs, Chinois, Indiens et Égyptiens. On a trouvé des tablettes babyloniennes () avec, en écriture cunéiforme, des tables de calcul de cubes et de racines cubiques.
La division par zéro consiste à chercher le résultat qu'on obtiendrait en prenant zéro comme diviseur. Ainsi, une division par zéro s'écrirait x/0, où x serait le dividende (ou numérateur). Dans les définitions usuelles de la multiplication, cette opération n'a pas de sens : elle contredit notamment la définition de la multiplication en tant que seconde loi de composition d'un corps, car zéro (l'élément neutre de l'addition) est un élément absorbant pour la multiplication. La division par zéro donne l'infini.
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
En mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : (A, +, ·) est un espace vectoriel sur K ; la loi × est définie de A × A dans A (loi de composition interne) ; la loi × est bilinéaire.
En mathématiques, en particulier en algèbre, les radicaux imbriqués (ou radicaux emboités) sont des expressions contenant des racines d'expressions contenant elles-mêmes des racines. Par exemple qui apparaît dans l'étude du pentagone régulier, ou d'autres plus complexes telles que . On peut désimbriquer certains radicaux imbriqués. Par exemple : Mais la désimbrication de radicaux est généralement considérée comme un problème difficile.