Hash collisionIn computer science, a hash collision or hash clash is when two pieces of data in a hash table share the same hash value. The hash value in this case is derived from a hash function which takes a data input and returns a fixed length of bits. Although hash algorithms have been created with the intent of being collision resistant, they can still sometimes map different data to the same hash (by virtue of the pigeonhole principle). Malicious users can take advantage of this to mimic, access, or alter data.
X.509In cryptography, X.509 is an International Telecommunication Union (ITU) standard defining the format of public key certificates. X.509 certificates are used in many Internet protocols, including TLS/SSL, which is the basis for HTTPS, the secure protocol for browsing the web. They are also used in offline applications, like electronic signatures. An X.509 certificate binds an identity to a public key using a digital signature. A certificate contains an identity (a hostname, or an organization, or an individual) and a public key (RSA, DSA, ECDSA, ed25519, etc.
Collision resistanceIn cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where a ≠ b but H(a) = H(b). The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions; the harder they are to find, the more cryptographically secure the hash function is.
SHA-3SHA-3 (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. Although part of the same series of standards, SHA-3 is internally different from the MD5-like structure of SHA-1 and SHA-2. SHA-3 is a subset of the broader cryptographic primitive family Keccak (ˈkɛtʃæk or ˈkɛtʃɑːk), designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche, building upon RadioGatún.
OpenSSLOpenSSL is a software library for applications that provide secure communications over computer networks against eavesdropping, and identify the party at the other end. It is widely used by Internet servers, including the majority of HTTPS websites. OpenSSL contains an open-source implementation of the SSL and TLS protocols. The core library, written in the C programming language, implements basic cryptographic functions and provides various utility functions.
Padding (cryptography)In cryptography, padding is any of a number of distinct practices which all include adding data to the beginning, middle, or end of a message prior to encryption. In classical cryptography, padding may include adding nonsense phrases to a message to obscure the fact that many messages end in predictable ways, e.g. sincerely yours. Official messages often start and end in predictable ways: My dear ambassador, Weather report, Sincerely yours, etc.
Length extension attackIn cryptography and computer security, a length extension attack is a type of attack where an attacker can use Hash(message1) and the length of message1 to calculate Hash(message1 ‖ message2) for an attacker-controlled message2, without needing to know the content of message1. This is problematic when the hash is used as a message authentication code with construction Hash(secret ‖ message), and message and the length of secret is known, because an attacker can include extra information at the end of the message and produce a valid hash without knowing the secret.
Key derivation functionIn cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a cryptographic hash function or block cipher). KDFs can be used to stretch keys into longer keys or to obtain keys of a required format, such as converting a group element that is the result of a Diffie–Hellman key exchange into a symmetric key for use with AES.
MD4The MD4 Message-Digest Algorithm is a cryptographic hash function developed by Ronald Rivest in 1990. The digest length is 128 bits. The algorithm has influenced later designs, such as the MD5, SHA-1 and RIPEMD algorithms. The initialism "MD" stands for "Message Digest". The security of MD4 has been severely compromised. The first full collision attack against MD4 was published in 1995, and several newer attacks have been published since then. As of 2007, an attack can generate collisions in less than 2 MD4 hash operations.
Comparison of cryptography librariesThe tables below compare cryptography libraries that deal with cryptography algorithms and have API function calls to each of the supported features. This table denotes, if a cryptography library provides the technical requisites for FIPS 140, and the status of their FIPS 140 certification (according to NIST's CMVP search, modules in process list and implementation under test list). Key operations include key generation algorithms, key exchange agreements and public key cryptography standards.