In algebraic geometry, a stable curve is an algebraic curve that is asymptotically stable in the sense of geometric invariant theory. This is equivalent to the condition that it is a complete connected curve whose only singularities are ordinary double points and whose automorphism group is finite. The condition that the automorphism group is finite can be replaced by the condition that it is not of arithmetic genus one and every non-singular rational component meets the other components in at least 3 points . A semi-stable curve is one satisfying similar conditions, except that the automorphism group is allowed to be reductive rather than finite (or equivalently its connected component may be a torus). Alternatively the condition that non-singular rational components meet the other components in at least three points is replaced by the condition that they meet in at least two points. Similarly a curve with a finite number of marked points is called stable if it is complete, connected, has only ordinary double points as singularities, and has finite automorphism group. For example, an elliptic curve (a non-singular genus 1 curve with 1 marked point) is stable. Over the complex numbers, a connected curve is stable if and only if, after removing all singular and marked points, the universal covers of all its components are isomorphic to the unit disk. Given an arbitrary scheme and setting a stable genus g curve over is defined as a proper flat morphism such that the geometric fibers are reduced, connected 1-dimensional schemes such that has only ordinary double-point singularities Every rational component meets other components at more than points These technical conditions are necessary because (1) reduces the technical complexity (also Picard-Lefschetz theory can be used here), (2) rigidifies the curves so that there are no infinitesimal automorphisms of the moduli stack constructed later on, and (3) guarantees that the arithmetic genus of every fiber is the same.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-512: Optimization on manifolds
We develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
Related publications (12)

Algebra and geometry of link homology Lecture notes from the IHES 2021 Summer School

Oscar Salomon Kivinen

These notes cover the lectures of the first named author at 2021 IHES Summer School on "Enumerative Geometry, Physics and Representation Theory" with additional details and references. They cover the definition of Khovanov-Rozansky triply graded homology, ...
WILEY2022

Covers Of Rational Double Points In Mixed Characteristic

Javier Alonso Carvajal Rojas

We further the classification of rational surface singularities. Suppose (S, n, k) is a 3-dimensional strictly Henselian regular local ring of mixed characteristic (0, p > 5). We classify functions f for which S/(f) has an isolated rational singularity at ...
2021

Motivic invariants of moduli spaces of rank 2 Bradlow-Higgs triples

Riccardo Grandi

In the present thesis we study the geometry of the moduli spaces of Bradlow-Higgs triples on a smooth projective curve C. There is a family of stability conditions for triples that depends on a positive real parameter σ. The moduli spaces of σ-semistable ...
EPFL2016
Show more
Related concepts (2)
Algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0.
Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Related MOOCs (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.