On Numbers and GamesOn Numbers and Games is a mathematics book by John Horton Conway first published in 1976. The book is written by a pre-eminent mathematician, and is directed at other mathematicians. The material is, however, developed in a playful and unpretentious manner and many chapters are accessible to non-mathematicians. Martin Gardner discussed the book at length, particularly Conway's construction of surreal numbers, in his Mathematical Games column in Scientific American in September 1976.
Aleph numberIn mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (). The cardinality of the natural numbers is (read aleph-nought or aleph-zero; the term aleph-null is also sometimes used), the next larger cardinality of a well-ordered set is aleph-one then and so on.
Real numberIn mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
InfinityInfinity is something which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes.
Ordinal arithmeticIn the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.
Beth numberIn mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers (), but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by . Beth numbers are defined by transfinite recursion: where is an ordinal and is a limit ordinal.
Ordinal numberIn set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element").
FinitismFinitism is a philosophy of mathematics that accepts the existence only of finite mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., infinite sets) are accepted as legitimate. The main idea of finitistic mathematics is not accepting the existence of infinite objects such as infinite sets. While all natural numbers are accepted as existing, the set of all natural numbers is not considered to exist as a mathematical object.
Epsilon numberIn mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ε that satisfy the equation in which ω is the smallest infinite ordinal.
Cardinality of the continuumIn set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers , sometimes called the continuum. It is an infinite cardinal number and is denoted by (lowercase Fraktur "c") or . The real numbers are more numerous than the natural numbers . Moreover, has the same number of elements as the power set of Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.