Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Ordinal arithmeticIn the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.
Beth (nombre)Dans la théorie des ensembles ZFC (avec axiome du choix), les nombres beth désignent une hiérarchie de nombres cardinaux indexée par les ordinaux, obtenue à partir du dénombrable en prenant le cardinal de l'ensemble des parties pour successeur, et la borne supérieure (ou réunion) pour passer à la limite. La notation de ces nombres utilise la deuxième lettre de l'alphabet hébreu, ou ב. En théorie des ensembles, les nombres cardinaux représentent la taille d'un ensemble.
Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Nombre epsilonEn mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway.
Puissance du continuEn mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
John Horton ConwayJohn Horton Conway, né le à Liverpool et mort le à New Brunswick (New Jersey), est un mathématicien britannique. Il s'est intéressé aux théories des groupes finis, des nœuds, des nombres, des jeux et du codage. Né en 1937 en Angleterre, John Horton Conway s'intéresse très tôt aux mathématiques et décide de devenir mathématicien dès l'âge de 11 ans. Il étudie les mathématiques à Cambridge, au Gonville and Caius College, et obtient son Bachelor of Arts en 1959.
Nombre surréelvignette|Représentation d'une partie de l'arbre des nombres surréels. En mathématiques, les nombres surréels sont les éléments d'une classe incluant celle des réels et celle des nombres ordinaux transfinis, et sur laquelle a été définie une structure de corps ; ceci signifie en particulier que l'on définit des inverses des nombres ordinaux transfinis ; ces ordinaux et leurs inverses sont respectivement plus grands et plus petits que n'importe quel nombre réel positif. Les surréels ne forment pas un ensemble au sens de la théorie usuelle.