In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis. The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle). This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces. In Cartesian space, the norm of a vector is the square root of the vector dotted with itself. That is, Many important results in linear algebra deal with collections of two or more orthogonal vectors. But often, it is easier to deal with vectors of unit length. That is, it often simplifies things to only consider vectors whose norm equals 1. The notion of restricting orthogonal pairs of vectors to only those of unit length is important enough to be given a special name. Two vectors which are orthogonal and of length 1 are said to be orthonormal. What does a pair of orthonormal vectors in 2-D Euclidean space look like? Let u = (x1, y1) and v = (x2, y2). Consider the restrictions on x1, x2, y1, y2 required to make u and v form an orthonormal pair. From the orthogonality restriction, u • v = 0. From the unit length restriction on u, ||u|| = 1. From the unit length restriction on v, ||v|| = 1. Expanding these terms gives 3 equations: Converting from Cartesian to polar coordinates, and considering Equation and Equation immediately gives the result r1 = r2 = 1.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Show more
Related lectures (105)
Hybrid Orbitals: Theory and Applications
Covers the theory and applications of hybrid orbitals in molecular structures.
Orthogonal Projection Theorems
Covers the theorems related to orthogonal projection and orthonormal bases.
Vibration of Diatomic Molecules
Explores the vibration of diatomic AB molecules and Fourier series, emphasizing equations of motion and Dirichlet's theorem.
Show more
Related publications (18)

SPEEDING UP KRYLOV SUBSPACE METHODS FOR COMPUTING f(A)b VIA RANDOMIZATION

Daniel Kressner, Alice Cortinovis

This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
Siam Publications2024

Wandering principal optical axes in van der Waals triclinic materials

Arslan Mazitov

Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matte ...
Nature Portfolio2024

Spectral representation of EEG data using learned graphs with application to motor imagery decoding

Dimitri Nestor Alice Van De Ville, Hamid Behjat, Maliheh Miri

Electroencephalography (EEG) data entail a complex spatiotemporal structure that reflects ongoing organi-zation of brain activity. Characterization of the spatial patterns is an indispensable step in numerous EEG processing pipelines. We present a novel me ...
Oxford2023
Show more
Related concepts (16)
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for arises in this fashion.
Rotation (mathematics)
Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.
Show more
Related MOOCs (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.