**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Orthonormality

Summary

In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.
The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle). This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero.
Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces. In Cartesian space, the norm of a vector is the square root of the vector dotted with itself. That is,
Many important results in linear algebra deal with collections of two or more orthogonal vectors. But often, it is easier to deal with vectors of unit length. That is, it often simplifies things to only consider vectors whose norm equals 1. The notion of restricting orthogonal pairs of vectors to only those of unit length is important enough to be given a special name. Two vectors which are orthogonal and of length 1 are said to be orthonormal.
What does a pair of orthonormal vectors in 2-D Euclidean space look like?
Let u = (x1, y1) and v = (x2, y2).
Consider the restrictions on x1, x2, y1, y2 required to make u and v form an orthonormal pair.
From the orthogonality restriction, u • v = 0.
From the unit length restriction on u, ||u|| = 1.
From the unit length restriction on v, ||v|| = 1.
Expanding these terms gives 3 equations:
Converting from Cartesian to polar coordinates, and considering Equation and Equation immediately gives the result r1 = r2 = 1.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (6)

Related concepts (16)

Ontological neighbourhood

Related courses (20)

Related publications (18)

Related MOOCs (4)

Related lectures (110)

Matrix (mathematics)

In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.

Orthonormal basis

In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for arises in this fashion.

Rotation (mathematics)

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

CH-244: Quantum chemistry

Introduction to Quantum Mechanics with examples related to chemistry

COM-406: Foundations of Data Science

We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Digital Signal Processing II

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Digital Signal Processing III

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

Hybrid Orbitals: Theory and Applications

Covers the theory and applications of hybrid orbitals in molecular structures.

Singular Value Decomposition: Theoretical Foundations

Covers the theoretical foundations of Singular Value Decomposition, explaining the decomposition of a matrix into singular values and vectors.

Orthogonal Projection: Euclidean Space

Explores orthogonal projection in Euclidean space, emphasizing uniqueness and calculation methods.

Daniel Kressner, Alice Cortinovis

This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...

Dimitri Nestor Alice Van De Ville, Hamid Behjat, Maliheh Miri

Electroencephalography (EEG) data entail a complex spatiotemporal structure that reflects ongoing organi-zation of brain activity. Characterization of the spatial patterns is an indispensable step in numerous EEG processing pipelines. We present a novel me ...

Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matte ...