TrigonometryTrigonometry () is a branch of mathematics concerned with relationships between angles and ratios of lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine. Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation.
Mollweide's formulaIn trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel in 1746. Thomas Simpson published the now-standard expression in 1748. Karl Mollweide republished the same result in 1808 without citing those predecessors. It can be used to check the consistency of solutions of triangles. Let a, b, and c be the lengths of the three sides of a triangle.
Solution of trianglesSolution of triangles (solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation. A general form triangle has six main characteristics (see picture): three linear (side lengths a, b, c) and three angular (α, β, γ).
Law of cotangentsIn trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. This is also known as the Cot Theorem. Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of cotangents relates the radius of the inscribed circle of a triangle (the inradius) to its sides and angles.
Acute and obtuse trianglesAn acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle. Acute and obtuse triangles are the two different types of oblique triangles — triangles that are not right triangles because they do not have a 90° angle.
TriangleA triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted . In Euclidean geometry, any three points, when non-collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane.
Divine Proportions: Rational Trigonometry to Universal GeometryDivine Proportions: Rational Trigonometry to Universal Geometry is a 2005 book by the mathematician Norman J. Wildberger on a proposed alternative approach to Euclidean geometry and trigonometry, called rational trigonometry. The book advocates replacing the usual basic quantities of trigonometry, Euclidean distance and angle measure, by squared distance and the square of the sine of the angle, respectively. This is logically equivalent to the standard development (as the replacement quantities can be expressed in terms of the standard ones and vice versa).
HypotenuseIn geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides. For example, if one of the other sides has a length of 3 (when squared, 9) and the other has a length of 4 (when squared, 16), then their squares add up to 25. The length of the hypotenuse is the square root of 25, that is, 5.
Heronian triangleIn geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.