Frame of referenceIn physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers). For n dimensions, n + 1 reference points are sufficient to fully define a reference frame.
Symmetric tensorIn mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments: for every permutation σ of the symbols {1, 2, ..., r}. Alternatively, a symmetric tensor of order r represented in coordinates as a quantity with r indices satisfies The space of symmetric tensors of order r on a finite-dimensional vector space V is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V.
Frame bundleIn mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E). The frame bundle of a smooth manifold is the one associated to its tangent bundle. For this reason it is sometimes called the tangent frame bundle.
Tullio Levi-CivitaTullio Levi-Civita, (ˈtʊlioʊ_ˈlɛvi_ˈtʃɪvᵻtə, ˈtulljo ˈlɛːvi ˈtʃiːvita; 29 March 1873 – 29 December 1941) was an Italian mathematician, most famous for his work on absolute differential calculus (tensor calculus) and its applications to the theory of relativity, but who also made significant contributions in other areas. He was a pupil of Gregorio Ricci-Curbastro, the inventor of tensor calculus.
Gregorio Ricci-CurbastroGregorio Ricci-Curbastro (ɡreˈɡɔːrjo ˈrittʃi kurˈbastro; 12 January 1925) was an Italian mathematician. He is most famous as the discoverer of tensor calculus. With his former student Tullio Levi-Civita, he wrote his most famous single publication, a pioneering work on the calculus of tensors, signing it as Gregorio Ricci. This appears to be the only time that Ricci-Curbastro used the shortened form of his name in a publication, and continues to cause confusion.
First fundamental formIn differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space. The first fundamental form is denoted by the Roman numeral I, Let X(u, v) be a parametric surface. Then the inner product of two tangent vectors is where E, F, and G are the coefficients of the first fundamental form.
Pullback (differential geometry)Let be a smooth map between smooth manifolds and . Then there is an associated linear map from the space of 1-forms on (the linear space of sections of the cotangent bundle) to the space of 1-forms on . This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on may be pulled back to using . When the map is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from to or vice versa.
Parametric surfaceA parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.
Line elementIn geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by . Line elements are used in physics, especially in theories of gravitation (most notably general relativity) where spacetime is modelled as a curved Pseudo-Riemannian manifold with an appropriate metric tensor.
Sign conventionIn physics, a sign convention is a choice of the physical significance of signs (plus or minus) for a set of quantities, in a case where the choice of sign is arbitrary. "Arbitrary" here means that the same physical system can be correctly described using different choices for the signs, as long as one set of definitions is used consistently. The choices made may differ between authors. Disagreement about sign conventions is a frequent source of confusion, frustration, misunderstandings, and even outright errors in scientific work.