Matter waveMatter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (dəˈbrɔɪ) in 1924, and so matter waves are also known as de Broglie waves.
Vacuum permittivityVacuum permittivity, commonly denoted ε0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum. It is an ideal (baseline) physical constant. Its CODATA value is: (farads per meter), with a relative uncertainty of It is a measure of how dense of an electric field is "permitted" to form in response to electric charges and relates the units for electric charge to mechanical quantities such as length and force.
Macroscopic scaleThe macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. When applied to physical phenomena and bodies, the macroscopic scale describes things as a person can directly perceive them, without the aid of magnifying devices. This is in contrast to observations (microscopy) or theories (microphysics, statistical physics) of objects of geometric lengths smaller than perhaps some hundreds of micrometers.
Momentum operatorIn quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is Planck's reduced constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by ) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.
Energy–momentum relationIn physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum. It can be written as the following equation: This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m0, and momentum of magnitude p; the constant c is the speed of light.
Spatial frequencyIn mathematics, physics, and engineering, spatial frequency is a characteristic of any structure that is periodic across position in space. The spatial frequency is a measure of how often sinusoidal components (as determined by the Fourier transform) of the structure repeat per unit of distance. The SI unit of spatial frequency is cycles per meter (m). In applications, spatial frequency is often expressed in units of cycles per millimeter (mm) or equivalently per mm. In wave propagation, the spatial frequency is also known as wavenumber.
Bohr magnetonIn atomic physics, the Bohr magneton (symbol μB) is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum. In SI units, the Bohr magneton is defined as and in the Gaussian CGS units as where e is the elementary charge, ħ is the reduced Planck constant, me is the electron mass, c is the speed of light. The idea of elementary magnets is due to Walther Ritz (1907) and Pierre Weiss.
Louis de BroglieLouis Victor Pierre Raymond, 7th Duc de Broglie (də_ˈbroʊɡli, also USdə_broʊˈɡliː,_də_ˈbrɔɪ, də bʁɔj or də bʁœj; 15 August 1892 – 19 March 1987) was a French physicist and aristocrat who made groundbreaking contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of electrons and suggested that all matter has wave properties. This concept is known as the de Broglie hypothesis, an example of wave–particle duality, and forms a central part of the theory of quantum mechanics.
Avogadro constantThe Avogadro constant, commonly denoted N_A or L, is an SI defining constant with an exact value of 6.02214076e23reciprocal moles. It is used as a normalization factor in the amount of substance in a sample (in units of moles), defined as the number of constituent particles (usually molecules, atoms, or ions) divided by N_A. In practice, its value is often approximated as 6.02×1023 or 6.022×1023 particles per mole. The constant is named after the physicist Amedeo Avogadro (1776–1856).
UncertaintyUncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.