**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Spatial frequency

Summary

In mathematics, physics, and engineering, spatial frequency is a characteristic of any structure that is periodic across position in space. The spatial frequency is a measure of how often sinusoidal components (as determined by the Fourier transform) of the structure repeat per unit of distance. The SI unit of spatial frequency is cycles per meter (m). In applications, spatial frequency is often expressed in units of cycles per millimeter (mm) or equivalently per mm.
In wave propagation, the spatial frequency is also known as wavenumber. Ordinary wavenumber is defined as the reciprocal of wavelength and is commonly denoted by or sometimes :
Angular wavenumber , expressed in rad per m, is related to ordinary wavenumber and wavelength by
In the study of visual perception, sinusoidal gratings are frequently used to probe the capabilities of the visual system. In these stimuli, spatial frequency is expressed as the number of cycles per degree of visual angle. Sine-wave gratings also differ from one another in amplitude (the magnitude of difference in intensity between light and dark stripes), and angle.
The spatial-frequency theory refers to the theory that the visual cortex operates on a code of spatial frequency, not on the code of straight edges and lines hypothesised by Hubel and Wiesel on the basis of early experiments on V1 neurons in the cat. In support of this theory is the experimental observation that the visual cortex neurons respond even more robustly to sine-wave gratings that are placed at specific angles in their receptive fields than they do to edges or bars. Most neurons in the primary visual cortex respond best when a sine-wave grating of a particular frequency is presented at a particular angle in a particular location in the visual field. (However, as noted by Teller (1984), it is probably not wise to treat the highest firing rate of a particular neuron as having a special significance with respect to its role in the perception of a particular stimulus, given that the neural code is known to be linked to relative firing rates.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (80)

Related people (30)

Related units (5)

Related courses (2)

Related concepts (16)

Related lectures (12)

MICRO-421: Imaging optics

Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray

AR-450: Montage and the metropolis

This course will introduce students to the concept of montage as a new paradigm for the perception, experience, and representation of urban and architectural space in modernity. Pursuing an interdisci

Visual perception is the ability to interpret the surrounding environment through photopic vision (daytime vision), color vision, scotopic vision (night vision), and mesopic vision (twilight vision), using light in the visible spectrum reflected by objects in the environment. This is different from visual acuity, which refers to how clearly a person sees (for example "20/20 vision"). A person can have problems with visual perceptual processing even if they have 20/20 vision.

The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by . The reduced Planck constant, or Dirac constant, equal to divided by , is denoted by .

Super-resolution imaging (SR) is a class of techniques that enhance (increase) the of an imaging system. In optical SR the diffraction limit of systems is transcended, while in geometrical SR the resolution of digital is enhanced. In some radar and sonar imaging applications (e.g. magnetic resonance imaging (MRI), high-resolution computed tomography), subspace decomposition-based methods (e.g. MUSIC) and compressed sensing-based algorithms (e.g., SAMV) are employed to achieve SR over standard periodogram algorithm.

Fourier Transform: Basics and Applications

Covers the basics of Fourier transform and its applications in analyzing various functions.

Understanding SpaceMOOC: Exploring Humans’ Space

Discusses the role of space in social life and how our sensory apparatus shapes our perception of space.

Spatial Frequencies and Wave Propagation

Explores spatial frequencies, wave propagation, diffraction phenomena, and optical filtering techniques.

Alireza Karimi, Elias Sebastian Klauser

A novel approach for linear parameter-varying (LPV) controller synthesis for adaptive rejection of time-varying sinusoidal disturbances is proposed. Only the frequency response data of a linear time-invariant (LTI) multiple-input multiple-output (MIMO) sys ...

2024In this letter, we introduce an optimal transport framework for inferring power distributions over both spatial location and temporal frequency. Recently, it has been shown that optimal transport is a powerful tool for estimating spatial spectra that chang ...

Romain Christophe Rémy Fleury, Matthieu Francis Malléjac, Bakhtiyar Orazbayev, Stefan Rotter

Light and sound waves can move objects through the transfer of linear or angular momentum, which has led to the development of optical and acoustic tweezers, with applications ranging from biomedical engineering to quantum optics. Although impressive manip ...

2024