Binary operationIn mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation on a set is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups.
Binary relationIn mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x in X and y in Y. It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation.
Row and column vectorsIn linear algebra, a column vector with m elements is an matrix consisting of a single column of m entries, for example, Similarly, a row vector is a matrix for some n, consisting of a single row of n entries, (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: and The set of all row vectors with n entries in a given field (such as the real numbers) forms an n-dimensional vector space; similarly, the set of all column vectors with m entries forms an m-dimensional vector space.
MonoidIn abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in , the morphisms of an to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object.
Group homomorphismIn mathematics, given two groups, (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to (H, ·) is a function h : G → H such that for all u and v in G it holds that where the group operation on the left side of the equation is that of G and on the right side that of H. From this property, one can deduce that h maps the identity element eG of G to the identity element eH of H, and it also maps inverses to inverses in the sense that Hence one can say that h "is compatible with the group structure".
Iterated functionIn mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: with the circle‐shaped symbol of function composition.
Operator (mathematics)In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly (for example in the case of an integral operator), and may be extended so as to act on related objects (an operator that acts on functions may act also on differential equations whose solutions are functions that satisfy the equation).
Polish notationPolish notation (PN), also known as normal Polish notation (NPN), Łukasiewicz notation, Warsaw notation, Polish prefix notation or simply prefix notation, is a mathematical notation in which operators precede their operands, in contrast to the more common infix notation, in which operators are placed between operands, as well as reverse Polish notation (RPN), in which operators follow their operands. It does not need any parentheses as long as each operator has a fixed number of operands.
Inverse functionIn mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by For a function , its inverse admits an explicit description: it sends each element to the unique element such that f(x) = y. As an example, consider the real-valued function of a real variable given by f(x) = 5x − 7. One can think of f as the function which multiplies its input by 5 then subtracts 7 from the result.
BijectionIn mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set; there are no unpaired elements between the two sets. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y.