EndomorphismIn mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space V is a linear map f: V → V, and an endomorphism of a group G is a group homomorphism f: G → G. In general, we can talk about endomorphisms in any . In the , endomorphisms are functions from a set S to itself. In any category, the composition of any two endomorphisms of X is again an endomorphism of X.
Cubic functionIn mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficients a, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.
Subscript and superscriptA subscript or superscript is a character (such as a number or letter) that is set slightly below or above the normal line of type, respectively. It is usually smaller than the rest of the text. Subscripts appear at or below the baseline, while superscripts are above. Subscripts and superscripts are perhaps most often used in formulas, mathematical expressions, and specifications of chemical compounds and isotopes, but have many other uses as well.
Transformation semigroupIn algebra, a transformation semigroup (or composition semigroup) is a collection of transformations (functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transformation (or composition) monoid. This is the semigroup analogue of a permutation group. A transformation semigroup of a set has a tautological semigroup action on that set. Such actions are characterized by being faithful, i.e., if two elements of the semigroup have the same action, then they are equal.
Composition operatorIn mathematics, the composition operator with symbol is a linear operator defined by the rule where denotes function composition. The study of composition operators is covered by AMS category 47B33. In physics, and especially the area of dynamical systems, the composition operator is usually referred to as the Koopman operator (and its wild surge in popularity is sometimes jokingly called "Koopmania"), named after Bernard Koopman. It is the left-adjoint of the transfer operator of Frobenius–Perron.
Infinite compositions of analytic functionsIn mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions.
Schröder's equationSchröder's equation, named after Ernst Schröder, is a functional equation with one independent variable: given the function h, find the function Ψ such that Schröder's equation is an eigenvalue equation for the composition operator Ch that sends a function f to f(h(.)). If a is a fixed point of h, meaning h(a) = a, then either Ψ(a) = 0 (or ∞) or s = 1. Thus, provided that Ψ(a) is finite and Ψ′(a) does not vanish or diverge, the eigenvalue s is given by s = h′(a).
Projection (set theory)In set theory, a projection is one of two closely related types of functions or operations, namely: A set-theoretic operation typified by the th projection map, written that takes an element of the Cartesian product to the value A function that sends an element to its equivalence class under a specified equivalence relation or, equivalently, a surjection from a set to another set. The function from elements to equivalence classes is a surjection, and every surjection corresponds to an equivalence relation under which two elements are equivalent when they have the same image.
Cyclic permutationIn mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted.
Fractional calculusFractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator and of the integration operator and developing a calculus for such operators generalizing the classical one.