In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space V is a linear map f: V → V, and an endomorphism of a group G is a group homomorphism f: G → G. In general, we can talk about endomorphisms in any . In the , endomorphisms are functions from a set S to itself. In any category, the composition of any two endomorphisms of X is again an endomorphism of X. It follows that the set of all endomorphisms of X forms a monoid, the full transformation monoid, and denoted End(X) (or End_C(X) to emphasize the category C). Automorphism An invertible endomorphism of X is called an automorphism. The set of all automorphisms is a subset of End(X) with a group structure, called the automorphism group of X and denoted Aut(X). In the following diagram, the arrows denote implication: Endomorphism ring Any two endomorphisms of an abelian group, A, can be added together by the rule (f + g)(a) = f(a) + g(a). Under this addition, and with multiplication being defined as function composition, the endomorphisms of an abelian group form a ring (the endomorphism ring). For example, the set of endomorphisms of is the ring of all n × n matrices with integer entries. The endomorphisms of a vector space or module also form a ring, as do the endomorphisms of any object in a . The endomorphisms of a nonabelian group generate an algebraic structure known as a near-ring. Every ring with one is the endomorphism ring of its regular module, and so is a subring of an endomorphism ring of an abelian group; however there are rings that are not the endomorphism ring of any abelian group. In any , especially for vector spaces, endomorphisms are maps from a set into itself, and may be interpreted as unary operators on that set, acting on the elements, and allowing the notion of element orbits to be defined, etc. Depending on the additional structure defined for the category at hand (topology, metric, ...

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-110(a): Advanced linear algebra I - vector spaces
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire (pour les futurs mathématiciens) et de démontrer rigoureusement les résultats principaux de ce sujet.
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
Related lectures (35)
Vector Spaces: Linear Applications and Generators
Introduces vector spaces, linear applications, generators, and dimensionality in mathematics.
Morphism of Groups
Covers the concept of morphism of groups, actions on sets, and automorphisms.
Jordan Normal Form: Part 1
Covers the Jordan normal form and the decomposition of vector spaces by an endomorphism.
Show more
Related publications (13)

Exploring SIDH-Based Signature Parameters

Tako Boris Fouotsa, Laurane Chloé Angélina Marco, Andrea Basso

Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves E and E′. This problem is closely related to that of computing the endomorphism ring of ...
Springer2024

Idempotents in the endomorphism algebra of a finite lattice

Jacques Thévenaz, Serge Bouc

We give a direct construction of a specific central idempotent in the endomorphism algebra of a finite lattice T. This idempotent is associated with all possible sublattices of T which are totally ordered. A generalization is considered in a conjectural fa ...
2021

On the lifting of the Dade group

Jacques Thévenaz, Caroline Lassueur

For the group of endo-permutation modules of a finite p-group, there is a surjective reduction homomorphism from a complete discrete valuation ring of characteristic 0 to its residue field of characteristic p. We prove that this reduction map always has a ...
2019
Show more
Related concepts (17)
Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.