In the study of dynamical systems, the van der Pol oscillator (named for Dutch physicist Balthasar van der Pol) is a non-conservative, oscillating system with non-linear damping. It evolves in time according to the second-order differential equation
where x is the position coordinate—which is a function of the time t—and μ is a scalar parameter indicating the nonlinearity and the strength of the damping.
The Van der Pol oscillator was originally proposed by the Dutch electrical engineer and physicist Balthasar van der Pol while he was working at Philips. Van der Pol found stable oscillations, which he subsequently called relaxation-oscillations and are now known as a type of limit cycle, in electrical circuits employing vacuum tubes. When these circuits are driven near the limit cycle, they become entrained, i.e. the driving signal pulls the current along with it. Van der Pol and his colleague, van der Mark, reported in the September 1927 issue of Nature that at certain drive frequencies an irregular noise was heard, which was later found to be the result of deterministic chaos.
The Van der Pol equation has a long history of being used in both the physical and biological sciences. For instance, in biology, Fitzhugh and Nagumo extended the equation in a planar field as a model for action potentials of neurons. The equation has also been utilised in seismology to model the two plates in a geological fault, and in studies of phonation to model the right and left vocal fold oscillators.
Liénard's theorem can be used to prove that the system has a limit cycle. Applying the Liénard transformation , where the dot indicates the time derivative, the Van der Pol oscillator can be written in its two-dimensional form:
Another commonly used form based on the transformation leads to:
When μ = 0, i.e. there is no damping function, the equation becomesThis is a form of the simple harmonic oscillator, and there is always conservation of energy.
When μ > 0, all initial conditions converge to a globally unique limit cycle.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours donne une introduction à la théorie des EDO, y compris existence de solutions locales/globales, comportement asymptotique, étude de la stabilité de points stationnaires et applications, en pa
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
In mathematics, in the study of dynamical systems with two-dimensional phase space, a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches infinity or as time approaches negative infinity. Such behavior is exhibited in some nonlinear systems. Limit cycles have been used to model the behavior of many real-world oscillatory systems. The study of limit cycles was initiated by Henri Poincaré (1854–1912).
Self-oscillation is the generation and maintenance of a periodic motion by a source of power that lacks any corresponding periodicity. The oscillator itself controls the phase with which the external power acts on it. Self-oscillators are therefore distinct from forced and parametric resonators, in which the power that sustains the motion must be modulated externally. In linear systems, self-oscillation appears as an instability associated with a negative damping term, which causes small perturbations to grow exponentially in amplitude.
In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain close even if slightly disturbed. In finite-dimensional systems, the evolving variable may be represented algebraically as an n-dimensional vector. The attractor is a region in n-dimensional space.
Covers the damped harmonic oscillator, introducing the field amplitude and coherent states.
Explores the stability of periodic solutions in continuous-time systems using the logistic map and the van der Pol oscillator.
Covers course organization, system control, dynamics, artificial intelligence, water cycles, and sea currents.
,
We analytically derive an amplitude equation for the weakly nonlinear evolution of the linearly most amplified response of a non-normal dynamical system. The development generalizes the method proposed in Ducimetière et al. (J. Fluid Mech., vol. 947, 2022, ...
2023
,
We study the stability of laminar wakes past three-dimensional rectangular prisms. The width-to-height ratio is set to W/H = 1.2, while the length-to-height ratio 1/6 < L/H < 3 covers a wide range of geometries from thin plates to elongated Ahmed bodies. F ...
CAMBRIDGE UNIV PRESS2023
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three ...