Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniature factories using nanomachines to build complex products (including additional nanomachines), this advanced form of nanotechnology (or molecular manufacturing) would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by biophysics, chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.
While conventional chemistry uses inexact processes obtaining inexact results, and biology exploits inexact processes to obtain definitive results, molecular nanotechnology would employ original definitive processes to obtain definitive results. The desire in molecular nanotechnology would be to balance molecular reactions in positionally-controlled locations and orientations to obtain desired chemical reactions and then to build systems by further assembling the products of these reactions.
A roadmap for the development of MNT is an objective of a broadly based technology project led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute. The roadmap was originally scheduled for completion by late 2006 but was released in January 2008. The Nanofactory Collaboration is a more focused ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda specifically aimed at positionally-controlled diamond mechanosynthesis and diamondoid nanofactory development. In August 2005, a task force consisting of 50+ international experts from various fields was organized by the Center for Responsible Nanotechnology to study the societal implications of molecular nanotechnology.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nanotechnology, often shortened to nanotech, is the use of matter on atomic, molecular, and supramolecular scales for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm).
A self-replicating machine is a type of autonomous robot that is capable of reproducing itself autonomously using raw materials found in the environment, thus exhibiting self-replication in a way analogous to that found in nature. The concept of self-replicating machines has been advanced and examined by Homer Jacobson, Edward F. Moore, Freeman Dyson, John von Neumann, Konrad Zuse and in more recent times by K.
A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices.
Introduction to heterogeneous integration for Nano-Bio-CMOS sensors on Chip.
Understanding and designing of active Bio/CMOS interfaces powered by nanostructures.
Students are given the means to dig effectively into modern scientific literature in the multidisciplinary field of bioengineering.
The method relies on granting sufficient time to become familiar wi
The course introduces the main classes of biomaterials used in the biomedical field. The interactions with biological environment are discussed and challenges highlighted. State of the art examples pe
Cholera, caused by the bacterium Vibrio cholerae, has affected humanity throughout history and still impacts millions of people every year. Apart from being a human pathogen, V. cholerae is a common member of the aquatic environment. Due to this natural re ...
EPFL2024
Molecular machines offer many opportunities for the development of responsive materials and introduce autono-mous motion in molecular systems. While basic molecular switches and motors carry out one type of motion upon being exposed to an external stimulus ...
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecti ...