In spectroscopy, the Rydberg constant, symbol for
heavy atoms or for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectra of an atom. The constant first arose as an empirical fitting parameter in the Rydberg formula for the hydrogen spectral series, but Niels Bohr later showed that its value could be calculated from more fundamental constants according to his model of the atom.
Before the 2019 redefinition of the SI base units, and the electron spin g-factor were the most accurately measured physical constants.
The constant is expressed for either hydrogen as , or at the limit of infinite nuclear mass as . In either case, the constant is used to express the limiting value of the highest wavenumber (inverse wavelength) of any photon that can be emitted from a hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing a hydrogen atom from its ground state. The hydrogen spectral series can be expressed simply in terms of the Rydberg constant for hydrogen and the Rydberg formula.
In atomic physics, Rydberg unit of energy, symbol Ry, corresponds to the energy of the photon whose wavenumber is the Rydberg constant, i.e. the ionization energy of the hydrogen atom in a simplified Bohr model.
The CODATA value is
or,
where
is the rest mass of the electron (i.e. the Electron mass),
is the elementary charge,
is the permittivity of free space,
is the Planck constant, and
is the speed of light in vacuum.
The Rydberg constant for hydrogen may be calculated from the reduced mass of the electron:
where
is the mass of the electron,
is the mass of the nucleus (a proton).
The Rydberg unit of energy is equivalent to joules and electronvolts in the following manner:
The angular wavelength is
Bohr model
The Bohr model explains the atomic spectrum of hydrogen (see hydrogen spectral series) as well as various other atoms and ions. It is not perfectly accurate, but is a remarkably good approximation in many cases, and historically played an important role in the development of quantum mechanics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by . The reduced Planck constant, or Dirac constant, equal to divided by , is denoted by .
In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant. The gross structure of line spectra is the line spectra predicted by the quantum mechanics of non-relativistic electrons with no spin.
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds. In atoms, hyperfine structure arises from the energy of the nuclear magnetic dipole moment interacting with the magnetic field generated by the electrons and the energy of the nuclear electric quadrupole moment in the electric field gradient due to the distribution of charge within the atom.
The recent investigation of chains of Rydberg atoms has brought back the problem of commensurateincommensurate transitions into the focus of current research. In two-dimensional classical systems or in one-dimensional quantum systems, the commensurate melt ...
The insulating rare-earth magnet LiY1-xHoxF4 has received great attention because a laboratory field applied perpendicular to its crystallographic c axis converts the low-energy electronic spin Hamiltonian into the (dilute) transverse field Ising model. Th ...
2022
,
Using the corner-transfer matrix renormalization group to contract the tensor network that describes its partition function, we investigate the nature of the phase transitions of the hard-square model, one of the exactly solved models of statistical physic ...