In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point where the first derivative (the slope of the tangent line to the graph of the function) is zero. The theorem is named after Michel Rolle.
If a real-valued function f is continuous on a proper closed interval , differentiable on the open interval , and f (a) = f (b), then there exists at least one c in the open interval such that
This version of Rolle's theorem is used to prove the mean value theorem, of which Rolle's theorem is indeed a special case. It is also the basis for the proof of Taylor's theorem.
Although the theorem is named after Michel Rolle, Rolle's 1691 proof covered only the case of polynomial functions. His proof did not use the methods of differential calculus, which at that point in his life he considered to be fallacious. The theorem was first proved by Cauchy in 1823 as a corollary of a proof of the mean value theorem. The name "Rolle's theorem" was first used by Moritz Wilhelm Drobisch of Germany in 1834 and by Giusto Bellavitis of Italy in 1846.
For a radius r > 0, consider the function
Its graph is the upper semicircle centered at the origin. This function is continuous on the closed interval and differentiable in the open interval , but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated at the endpoints because it only requires the function to be differentiable in the open interval.
If differentiability fails at an interior point of the interval, the conclusion of Rolle's theorem may not hold. Consider the absolute value function
Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero. This is because that function, although continuous, is not differentiable at x = 0.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the mean value theorem (or Lagrange theorem) states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.
This thesis is a study of harmonic maps in two different settings. The first part is concerned with harmonic maps from smooth metric measure spaces to Riemannian manifolds. The second part is study of harmonic maps from Riemannian polyhedra to non-positive ...
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
The diffusion limit of kinetic systems has been subject of numerous studies since prominent works of Lebowitz et al. [1] and van Kampen [2]. More recently, the topic has seen a fresh interest from the rarefied gas simulation perspective. In particular, Fok ...