In mathematics, the mean value theorem (or Lagrange theorem) states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval. More precisely, the theorem states that if is a continuous function on the closed interval and differentiable on the open interval , then there exists a point in such that the tangent at is parallel to the secant line through the endpoints and , that is, A special case of this theorem for inverse interpolation of the sine was first described by Parameshvara (1380–1460), from the Kerala School of Astronomy and Mathematics in India, in his commentaries on Govindasvāmi and Bhāskara II. A restricted form of the theorem was proved by Michel Rolle in 1691; the result was what is now known as Rolle's theorem, and was proved only for polynomials, without the techniques of calculus. The mean value theorem in its modern form was stated and proved by Augustin Louis Cauchy in 1823. Many variations of this theorem have been proved since then. Let be a continuous function on the closed interval , and differentiable on the open interval , where . Then there exists some in such that The mean value theorem is a generalization of Rolle's theorem, which assumes , so that the right-hand side above is zero. The mean value theorem is still valid in a slightly more general setting. One only needs to assume that is continuous on , and that for every in the limit exists as a finite number or equals or . If finite, that limit equals . An example where this version of the theorem applies is given by the real-valued cube root function mapping , whose derivative tends to infinity at the origin. The theorem, as stated, is false if a differentiable function is complex-valued instead of real-valued.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (31)
MATH-100(b): Advanced analysis I
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-101(a): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related lectures (133)
Rolle's and Mean Value Theorem
Covers higher derivatives, local extrema, and the application of Rolle's and Mean Value Theorems.
Differential Forms Integration
Covers the integration of differential forms on smooth manifolds, including the concepts of closed and exact forms.
Derivability Conditions
Explores conditions for non-differentiability in multivariable calculus and the implications of the differentiability theorem.
Show more
Related publications (8)

Null energy constraints on two-dimensional RG flows

Grégoire Olivier Mathys

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
New York2024

Entropic Fokker-Planck kinetic model

Mohammadhossein Gorji

The diffusion limit of kinetic systems has been subject of numerous studies since prominent works of Lebowitz et al. [1] and van Kampen [2]. More recently, the topic has seen a fresh interest from the rarefied gas simulation perspective. In particular, Fok ...
2021

Multiple ergodic averages along functions from a Hardy field: convergence, recurrence and combinatorial applications

Florian Karl Richter

We obtain new results pertaining to convergence and recurrence of multiple ergodic averages along functions from a Hardy field. Among other things, we confirm some of the conjectures posed by Frantzikinakis in [Fra10; Fra16] and obtain combinatorial applic ...
2020
Show more
Related concepts (10)
Indian mathematics
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra.
Fundamental theorem of calculus
The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). The two operations are inverses of each other apart from a constant value which depends on where one starts to compute area.
Rolle's theorem
In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point where the first derivative (the slope of the tangent line to the graph of the function) is zero. The theorem is named after Michel Rolle.
Show more
Related MOOCs (9)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.