In physics, shear rate is the rate at which a progressive shearing deformation is applied to some material.
The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary (Couette flow), is defined by
where:
is the shear rate, measured in reciprocal seconds;
v is the velocity of the moving plate, measured in meters per second;
h is the distance between the two parallel plates, measured in meters.
Or:
For the simple shear case, it is just a gradient of velocity in a flowing material. The SI unit of measurement for shear rate is s−1, expressed as "reciprocal seconds" or "inverse seconds". However, when modelling fluids in 3D, it is common to consider a scalar value for the shear rate by calculating the second invariant of the strain-rate tensor
The shear rate at the inner wall of a Newtonian fluid flowing within a pipe is
where:
is the shear rate, measured in reciprocal seconds;
v is the linear fluid velocity;
d is the inside diameter of the pipe.
The linear fluid velocity v is related to the volumetric flow rate Q by
where A is the cross-sectional area of the pipe, which for an inside pipe radius of r is given by
thus producing
Substituting the above into the earlier equation for the shear rate of a Newtonian fluid flowing within a pipe, and noting (in the denominator) that d = 2r:
which simplifies to the following equivalent form for wall shear rate in terms of volumetric flow rate Q and inner pipe radius r:
For a Newtonian fluid wall, shear stress (τ_w) can be related to shear rate by where μ is the dynamic viscosity of the fluid. For non-Newtonian fluids, there are different constitutive laws depending on the fluid, which relates the stress tensor to the shear rate tensor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une introduction à la rhéologie des solides viscoélastiques linéaires, aux phénomènes d'écoulements des fluides, et aux méthodes utilisées en rhéologie. Les fluides Newtoniens ou non, la
The first part of the course (~20%) is devoted to green chemistry and life cycle assessment.The remainder focuses on process intensification (fundamentals, detailed description of a few selected te
Application des principales catégories de procédés de production.Modèles physiques élémentaires décrivant le comportement des principaux procédés de production.Compréhension de base des aspects éc
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.
A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In non-Newtonian fluids, viscosity can change when under force to either more liquid or more solid. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid. Many salt solutions and molten polymers are , as are many commonly found substances such as custard, toothpaste, starch suspensions, corn starch, paint, blood, melted butter, and shampoo.
Shear stress (often denoted by τ (Greek: tau)) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. The formula to calculate average shear stress is force per unit area.: where: τ = the shear stress; F = the force applied; A = the cross-sectional area of material with area parallel to the applied force vector.
BackgroundImpaired cerebrospinal fluid (CSF) dynamics is involved in the pathophysiology of neurodegenerative diseases of the central nervous system and the optic nerve (ON), including Alzheimer's and Parkinson's disease, as well as frontotemporal dementia ...
To obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by Euclid, the shear measurement requires calibration using galaxy image simulations. As it typically requires millions of simulated galaxy images and ...
Edp Sciences S A2024
,
We update the publicly available weak lensing shear measurement algorithm pyRRG for the JWST, and apply it to UNCOVER DR1 imaging of galaxy cluster Abell 2744. At short wavelengths (