In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H+) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions. In these reactions, the conjugate acid of the carbonyl group is a better electrophile than the neutral carbonyl group itself. Depending on the chemical species that act as the acid or base, catalytic mechanisms can be classified as either specific catalysis and general catalysis. Many enzymes operate by general catalysis. Acid catalysis is mainly used for organic chemical reactions. Many acids can function as sources for the protons. Acid used for acid catalysis include hydrofluoric acid (in the alkylation process), phosphoric acid, toluenesulfonic acid, polystyrene sulfonate, heteropoly acids, zeolites. Strong acids catalyze the hydrolysis and transesterification of esters, e.g. for processing fats into biodiesel. In terms of mechanism, the carbonyl oxygen is susceptible to protonation, which enhances the electrophilicity at the carbonyl carbon. In industrial scale chemistry, many processes are catalysed by "solid acids". Solid acids do not dissolve in the reaction medium. Well known examples include these oxides, which function as Lewis acids: silico-aluminates (zeolites, alumina, silico-alumino-phosphate), sulfated zirconia, and many transition metal oxides (titania, zirconia, niobia, and more). Such acids are used in cracking. Many solid Brønsted acids are also employed industrially, including sulfonated polystyrene, sulfonated carbon, solid phosphoric acid, niobic acid, and heteropolyoxometallates. A particularly large scale application is alkylation, e.g., the combination of benzene and ethylene to give ethylbenzene. Another major application is the rearrangement of cyclohexanone oxime to caprolactam. Many alkylamines are prepared by amination of alcohols, catalyzed by solid acids.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (16)
ChE-410: Catalysis for emission control and energy processes
The course is an introduction to heterogeneous catalysis for environmental protection and energy production. It focusses on catalytic exhaust gas cleaning as well as catalytic systems relevant for gas
CH-707: Frontiers in Chemical Synthesis. Towards Sustainable Chemistry
This training will empowered the student with all the tools of modern chemistry, which will be highly useful for his potential career as a process or medicinal chemist in industry.
CH-435: Asymmetric catalysis for fine chemicals synthesis
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
Show more
Related lectures (58)
Enzymatic Catalysis & Inhibition
Explores enzymatic catalysis mechanisms and inhibition dynamics in catalysis and polymerization.
Organic Chemistry: Acid-Base Reactions and Electronegativity
Covers acid-base reactions, correct arrowing, electronegativity, and the inductive effect on acid strength.
Organometallics: Carbenes and Transfer Hydrogenation
Covers carbenes, transfer hydrogenation with isopropanol, and the principles of green chemistry.
Show more
Related publications (121)

Lewis acid catalyzed [4+2] annulation of bicyclobutanes with dienol ethers for the synthesis of bicyclo[4.1.1]octanes

Jérôme Waser, Stefano Nicolai

Bicyclic carbocycles containing a high fraction of Csp3 have become highly attractive synthetic targets because of the multiple applications they have found in medicinal chemistry. The formal cycloaddition of bicyclobutanes (BCBs) with two- or three-atom p ...
Royal Soc Chemistry2024

Arylative Ring Expansion of 3-Vinylazetidin-3-Ols and 3-Vinyloxetan-3-Ols to Dihydrofurans by Dual Palladium and Acid Catalysis

Qian Wang, Jieping Zhu, Takuji Fujii

In contrast to the well-studied 1-vinylcyclobutanols, the reactivity of 3-vinylazetidin-3-ols 1 and 3-vinyloxetan-3-ols 2 under transition metal catalysis remains largely unexplored. We report herein their unique reactivity under dual palladium and acid ca ...
Wiley-V C H Verlag Gmbh2024

Chalcogen bonding catalysis

Jieping Zhu

Catalysts play a major role in chemical synthesis, and catalysis is considered to be a green and economic process. Catalysis is dominated by covalent interactions between the catalyst and substrate. The design of non-covalent catalysts came into limelight ...
2024
Show more
Related concepts (10)
Dehydration reaction
In chemistry, a dehydration reaction is a chemical reaction that involves the loss of water from the reacting molecule or ion. Dehydration reactions are common processes, the reverse of a hydration reaction. The classic example of a dehydration reaction is the Fischer esterification, which involves treating a carboxylic acid with an alcohol to give an ester RCO2H + R′OH RCO2R′ + H2O Often such reactions require the presence of a dehydrating agent, i.e. a substance that reacts with water.
Zeolite
Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula M1/nn+(AlO2)-(SiO2)x・yH2O where M1/nn+ is either a metal ion or H+. These positive ions can be exchanged for others in a contacting electrolyte solution. H+ exchanged zeolites are particularly useful as solid acid catalysts.
Aluminium oxide
Aluminium oxide (or Aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.