A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon dioxide) by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas (and/or carbon monoxide) and oxygen.
The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources (see hydrogen economy). Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.
Solid oxide electrolyzer cells operate at temperatures which allow high-temperature electrolysis to occur, typically between 500 and 850 °C. These operating temperatures are similar to those conditions for a solid oxide fuel cell. The net cell reaction yields hydrogen and oxygen gases. The reactions for one mole of water are shown below, with oxidation of water occurring at the anode and reduction of water occurring at the cathode.
Anode: 2 O2− → O2 + 4 e−
Cathode: H2O + 2 e− → H2 + O2−
Net Reaction: 2 H2O → 2 H2 + O2
Electrolysis of water at 298 K (25 °C) requires 285.83 kJ of energy per mole in order to occur, and the reaction is increasingly endothermic with increasing temperature. However, the energy demand may be reduced due to the Joule heating of an electrolysis cell, which may be utilized in the water splitting process at high temperatures. Research is ongoing to add heat from external heat sources such as concentrating solar thermal collectors and geothermal sources.
The general function of the electrolyzer cell is to split water in the form of steam into pure H2 and O2. Steam is fed into the porous cathode. When a voltage is applied, the steam moves to the cathode-electrolyte interface and is reduced to form pure H2 and oxygen ions. The hydrogen gas then diffuses back up through the cathode and is collected at its surface as hydrogen fuel, while the oxygen ions are conducted through the dense electrolyte.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students describe and explain the thermodynamic and operating principles of internal combustion engines and all fuel cell types, identify the determining physical parameters for the operating regi
This course aims at understanding classical and non-classical nucleation theory, at reviewing different techniques for the synthesis of nanomaterials (mainly nanoparticles and thin films) and at learn
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
Power-to-gas (often abbreviated P2G) is a technology that uses electric power to produce a gaseous fuel. When using surplus power from wind generation, the concept is sometimes called windgas. Most P2G systems use electrolysis to produce hydrogen. The hydrogen can be used directly, or further steps (known as two-stage P2G systems) may convert the hydrogen into syngas, methane, or LPG. Single-stage P2G systems to produce methane also exist, such as reversible solid oxide cell (rSOC) technology.
Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses. Some hydrogen technologies are carbon neutral and could have a role in preventing climate change and a possible future hydrogen economy. Hydrogen is a chemical widely used in various applications including ammonia production, oil refining and energy. The most common methods for producing hydrogen on an industrial scale are: Steam reforming, oil reforming, coal gasification, water electrolysis.
Hydrogen production is the family of industrial methods for generating hydrogen gas. As of 2020, the majority of hydrogen (~95%) is produced from fossil fuels by steam reforming of natural gas and other light hydrocarbons, partial oxidation of heavier hydrocarbons, and coal gasification. Other methods of hydrogen production include biomass gasification, methane pyrolysis, and electrolysis of water. Methane pyrolysis and water electrolysis can use any source of electricity including solar power.
A reversible photo-electrochemical device operating under concentrated irradiation could offer a stand-alone solution for producing solar fuel (in photo-driven electrolysis mode) and power (in fuel cell mode). This strategy would present the advantage of h ...
2024
The transition towards clean renewable energy sources, where wind and solar are prone to variation, requires adequate energy storage. Power-to-methane (PtM) systems can be part of the solution. Specifically, solid-oxide-electrolyser (SOE) based PtM systems ...
EPFL2024
AbstractThe degradation of metal interconnects (ICs) in Solid Oxide Cells (SOCs) primarily results from chromium (Cr) oxide scale growth on stainless-steel substrates, causing ohmic loss and air-side electrode poisoning by Cr. This thesis addresses these c ...