Parseval's identityIn mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. Geometrically, it is a generalized Pythagorean theorem for inner-product spaces (which can have an uncountable infinity of basis vectors).
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Fredholm theoryIn mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm's theory is given in terms of the spectral theory of Fredholm operators and Fredholm kernels on Hilbert space. The theory is named in honour of Erik Ivar Fredholm. The following sections provide a casual sketch of the place of Fredholm theory in the broader context of operator theory and functional analysis.
Lp spaceDISPLAYTITLE:Lp space In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces.
Plancherel theoremIn mathematics, the Plancherel theorem (sometimes called the Parseval–Plancherel identity) is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if is a function on the real line, and is its frequency spectrum, then A more precise formulation is that if a function is in both Lp spaces and , then its Fourier transform is in , and the Fourier transform map is an isometry with respect to the L2 norm.
Weak operator topologyIn functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space , such that the functional sending an operator to the complex number is continuous for any vectors and in the Hilbert space. Explicitly, for an operator there is base of neighborhoods of the following type: choose a finite number of vectors , continuous functionals , and positive real constants indexed by the same finite set . An operator lies in the neighborhood if and only if for all .
Strong operator topologyIn functional analysis, a branch of mathematics, the strong operator topology, often abbreviated SOT, is the locally convex topology on the set of bounded operators on a Hilbert space H induced by the seminorms of the form , as x varies in H. Equivalently, it is the coarsest topology such that, for each fixed x in H, the evaluation map (taking values in H) is continuous in T. The equivalence of these two definitions can be seen by observing that a subbase for both topologies is given by the sets (where T0 is any bounded operator on H, x is any vector and ε is any positive real number).
Locally compact spaceIn topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Let X be a topological space. Most commonly X is called locally compact if every point x of X has a compact neighbourhood, i.
Operator topologiesIn the mathematical field of functional analysis there are several standard topologies which are given to the algebra B(X) of bounded linear operators on a Banach space X. Let be a sequence of linear operators on the Banach space X. Consider the statement that converges to some operator T on X. This could have several different meanings: If , that is, the operator norm of (the supremum of , where x ranges over the unit ball in X ) converges to 0, we say that in the uniform operator topology.
Spectral theoryIn mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.