In mathematics, the Plancherel theorem (sometimes called the Parseval–Plancherel identity) is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if is a function on the real line, and is its frequency spectrum, then A more precise formulation is that if a function is in both Lp spaces and , then its Fourier transform is in , and the Fourier transform map is an isometry with respect to the L2 norm. This implies that the Fourier transform map restricted to has a unique extension to a linear isometric map , sometimes called the Plancherel transform. This isometry is actually a unitary map. In effect, this makes it possible to speak of Fourier transforms of quadratically integrable functions. Plancherel's theorem remains valid as stated on n-dimensional Euclidean space . The theorem also holds more generally in locally compact abelian groups. There is also a version of the Plancherel theorem which makes sense for non-commutative locally compact groups satisfying certain technical assumptions. This is the subject of non-commutative harmonic analysis. The unitarity of the Fourier transform is often called Parseval's theorem in science and engineering fields, based on an earlier (but less general) result that was used to prove the unitarity of the Fourier series. Due to the polarization identity, one can also apply Plancherel's theorem to the inner product of two functions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MATH-207(d): Analysis IV
The course studies the fundamental concepts of complex analysis and Laplace analysis with a view to their use to solve multidisciplinary scientific engineering problems.
MATH-203(b): Analysis III
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
Show more
Related lectures (29)
Fourier Transform: L^2 Analysis
Explores the Fourier transformation on L^2, emphasizing convergence and density in Fourier analysis.
Trigonometric Polynomials: Fourier Inversion and Plancherel Formulas
Explores trigonometric polynomials, emphasizing Fourier inversion and Plancherel formulas.
Uniform Convergence of Fourier Series
Covers the concept of uniform convergence of Fourier series and Dirichlet's theorem application.
Show more
Related publications (4)
Related concepts (10)
Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Parseval's theorem
In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates from a 1799 theorem about series by Marc-Antoine Parseval, which was later applied to the Fourier series. It is also known as Rayleigh's energy theorem, or Rayleigh's identity, after John William Strutt, Lord Rayleigh.
Noncommutative harmonic analysis
In mathematics, noncommutative harmonic analysis is the field in which results from Fourier analysis are extended to topological groups that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of Fourier series and Fourier transforms, the major business of non-commutative harmonic analysis is usually taken to be the extension of the theory to all groups G that are locally compact.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.