Sandwich theory describes the behaviour of a beam, plate, or shell which consists of three layers—two facesheets and one core. The most commonly used sandwich theory is linear and is an extension of first-order beam theory. The linear sandwich theory is of importance for the design and analysis of sandwich panels, which are of use in building construction, vehicle construction, airplane construction and refrigeration engineering.
Some advantages of sandwich construction are:
Sandwich cross sections are composite. They usually consist of a low to moderate stiffness core which is connected with two stiff exterior facesheets. The composite has a considerably higher shear stiffness to weight ratio than an equivalent beam made of only the core material or the facesheet material. The composite also has a high tensile strength to weight ratio.
The high stiffness of the facesheet leads to a high bending stiffness to weight ratio for the composite.
The behavior of a beam with sandwich cross-section under a load differs from a beam with a constant elastic cross section. If the radius of curvature during bending is large compared to the thickness of the sandwich beam and the strains in the component materials are small, the deformation of a sandwich composite beam can be separated into two parts
deformations due to bending moments or bending deformation, and
deformations due to transverse forces, also called shear deformation.
Sandwich beam, plate, and shell theories usually assume that the reference stress state is one of zero stress. However, during curing, differences of temperature between the facesheets persist because of the thermal separation by the core material. These temperature differences, coupled with different linear expansions of the facesheets, can lead to a bending of the sandwich beam in the direction of the warmer facesheet. If the bending is constrained during the manufacturing process, residual stresses can develop in the components of a sandwich composite.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours introduit les bases de la mécanique des structures : calcul des contraintes et déformations provoquées par les forces extérieures et calcul des déformations. Ces enseignements théoriques sont
In materials science, a sandwich-structured composite is a special class of composite materials that is fabricated by attaching two thin-but-stiff skins to a lightweight but thick core. The core material is normally low strength, but its higher thickness provides the sandwich composite with high bending stiffness with overall low density. Open- and closed-cell-structured foams like polyethersulfone, polyvinylchloride, polyurethane, polyethylene or polystyrene foams, balsa wood, syntactic foams, and honeycombs are commonly used core materials.
Covers Classical Laminate Theory for solving mechanics problems with multiple material layers, discussing displacements, strains, stresses, and equilibrium.
A folding fabrication method inspired by origami for carbon fiber-reinforced composites to fabricate three-dimensional structures is presented. PMI foams serve as substrates, making it possible to manufacture this kind of origami-inspired composite sandwic ...
In capacity designed steel moment resisting frames (MRFs), beam-to-column joints (i.e., panel zones) are designed to remain elastic. To potentially exploit the beneficial aspects of the stable panel zone hysteretic response in shear, a robust panel zone mo ...
Research conducted after the 1994 Northridge earthquake in the U.S. and the 1995 Kobe earthquake in Japan led to the development of today's pre-qualified beam-to-column connections for capacity-designed steel moment resisting frames (MRFs). Welded moment c ...