Algebraic topologyAlgebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.
Atiyah–Singer index theoremIn differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some topological data). It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.
Gauge theoryIn physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
K-theoryIn mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
Simon DonaldsonSir Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London. Donaldson's father was an electrical engineer in the physiology department at the University of Cambridge, and his mother earned a science degree there.
Gauge theory (mathematics)In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Nigel HitchinNigel James Hitchin FRS (born 2 August 1946) is a British mathematician working in the fields of differential geometry, gauge theory, algebraic geometry, and mathematical physics. He is a Professor Emeritus of Mathematics at the University of Oxford. Hitchin attended Ecclesbourne School, Duffield, and earned his BA in mathematics from Jesus College, Oxford, in 1968. After moving to Wolfson College, he received his D.Phil. in 1972. From 1971 to 1973 he visited the Institute for Advanced Study and 1973/74 the Courant Institute of Mathematical Sciences of New York University.
Frank AdamsJohn Frank Adams (5 November 1930 – 7 January 1989) was a British mathematician, one of the major contributors to homotopy theory. He was born in Woolwich, a suburb in south-east London, and attended Bedford School. He began research as a student of Abram Besicovitch, but soon switched to algebraic topology. He received his PhD from the University of Cambridge in 1956. His thesis, written under the direction of Shaun Wylie, was titled On spectral sequences and self-obstruction invariants.
Abel PrizeThe Abel Prize (ˈɑːbəl ; Abelprisen ˈɑ̀ːbl̩ˌpriːsn̩) is awarded annually by the King of Norway to one or more outstanding mathematicians. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) and directly modeled after the Nobel Prizes. It comes with a monetary award of 7.5 million Norwegian kroner (NOK; increased from 6 million NOK in 2019). The Abel Prize's history dates back to 1899, when its establishment was proposed by the Norwegian mathematician Sophus Lie when he learned that Alfred Nobel's plans for annual prizes would not include a prize in mathematics.
Friedrich HirzebruchFriedrich Ernst Peter Hirzebruch ForMemRS (17 October 1927 – 27 May 2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure in his generation. He has been described as "the most important mathematician in Germany of the postwar period." Hirzebruch was born in Hamm, Westphalia in 1927. His father of the same name was a maths teacher. Hirzebruch studied at the University of Münster from 1945–1950, with one year at ETH Zürich.