La topologie algébrique, anciennement appelée topologie combinatoire, est la branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories. L'idée fondamentale est de pouvoir associer à tout espace topologique des objets algébriques (nombre, groupe, espace vectoriel, etc.
En mathématiques, et plus précisément en géométrie différentielle, le théorème de l'indice d'Atiyah-Singer, démontré par Michael Atiyah et Isadore Singer en 1963, affirme que pour un opérateur différentiel elliptique sur une variété différentielle compacte, l’indice analytique (lié à la dimension de l'espace des solutions) est égal à l’indice topologique (défini à partir d'invariants topologiques). De nombreux autres théorèmes, comme le théorème de Riemann-Roch, en sont des cas particuliers, et il a des applications en physique théorique.
En physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
En mathématiques, la K-théorie est un outil utilisé dans plusieurs disciplines. En topologie algébrique, la sert de théorie de cohomologie. Une variante est utilisée en algèbre sous le nom de K-théorie algébrique. Les premiers résultats de la K-théorie ont été dans le cadre de la topologie algébrique, comme une théorie de cohomologie extraordinaire (elle ne vérifie pas l'axiome de dimension). Par la suite, ces méthodes ont été utilisées dans beaucoup d'autres domaines comme la géométrie algébrique, l'algèbre, la théorie des nombres, la théorie des opérateurs, etc.
Sir Simon Kirwan Donaldson, né le à Cambridge, est un mathématicien, connu principalement pour ses travaux sur la topologie des variétés de dimension 4. Donaldson a obtenu son Bachelor of Arts de mathématiques au Pembroke College en 1979, et effectua ses travaux de troisième cycle sous la direction de Nigel Hitchin, puis de Michael Atiyah. Il est encore étudiant lorsqu'il prouve, en 1982, un résultat qui le rendit célèbre, publié dans l'article Self-dual connections and the topology of smooth 4-manifolds en 1983.
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Nigel James Hitchin (né le à Holbrook, Derbyshire, Angleterre) est un mathématicien britannique, spécialiste de géométrie différentielle et algébrique, qu'il applique notamment à la physique théorique. Il est actuellement professeur émérite à l'Université d'Oxford. Après des études élémentaires à l'école d'Ecclesbourne à Duffield, Hitchin obtient son BA en mathématiques à l'Université d'Oxford (Jesus College) en 1968.
John Frank Adams ( – ) est un mathématicien britannique, l'un des fondateurs de la théorie de l'homotopie. Frank Adams est né à Woolwich, dans la banlieue sud-est de Londres. Il commence ses recherches au Trinity College de Cambridge auprès d'Abram Besicovitch, mais se réoriente rapidement vers la topologie algébrique. En 1956, il soutient à Cambridge un Ph. D., dirigé par Shaun Wylie et devient Fellow du Trinity. Une bourse lui permet de faire un séjour à l'université de Chicago et à l'IAS (Institute for Advanced Study) en 1957-1958 et il séjourne de nouveau à l'IAS en 1961.
Le prix Abel est une des deux plus prestigieuses récompenses en mathématiques avec la médaille Fields. Tous deux sont considérés comme équivalents d'un prix Nobel, inexistant pour cette discipline. Le prix Abel est décerné annuellement à des mathématiciens par l'Académie norvégienne des sciences et des lettres. En 2001, le gouvernement norvégien annonce qu'à l'occasion du bicentenaire de la naissance du mathématicien norvégien Niels Henrik Abel (1802-1829) va être créé un nouveau prix pour les mathématiciens.
Friedrich Ernst Peter Hirzebruch est un mathématicien allemand né le à Hamm et décédé le à Bonn. Il est notamment connu pour ses travaux sur la topologie, les variétés complexes et la géométrie algébrique. Il fut une personnalité de premier plan à son époque. Il a été décrit comme . En 1954, il généralise le théorème de Riemann-Roch en dimension arbitraire pour des variétés algébriques sur le corps des nombres complexes. Sa démonstration sera améliorée et étendue par Alexandre Grothendieck.