CycloidIn geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve. The cycloid, with the cusps pointing upward, is the curve of fastest descent under uniform gravity (the brachistochrone curve). It is also the form of a curve for which the period of an object in simple harmonic motion (rolling up and down repetitively) along the curve does not depend on the object's starting position (the tautochrone curve).
Blaise PascalBlaise Pascal (pæˈskæl , alsoUK-ˈskɑːl,'paesk@l,-skæl , USpɑːˈskɑːl ; blɛz paskal; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic writer. Pascal was a child prodigy who was educated by his father, a tax collector in Rouen. His earliest mathematical work was on conic sections; he wrote a significant treatise on the subject of projective geometry at the age of 16. He later corresponded with Pierre de Fermat on probability theory, strongly influencing the development of modern economics and social science.
Method of exhaustionThe method of exhaustion (methodus exhaustionibus) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area between the nth polygon and the containing shape will become arbitrarily small as n becomes large. As this difference becomes arbitrarily small, the possible values for the area of the shape are systematically "exhausted" by the lower bound areas successively established by the sequence members.
Arc lengthArc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification. A rectifiable curve has a finite number of segments in its rectification (so the curve has a finite length). If a curve can be parameterized as an injective and continuously differentiable function (i.e., the derivative is a continuous function) , then the curve is rectifiable (i.
Scientific RevolutionThe Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transformed the views of society about nature. The Scientific Revolution took place in Europe in the second half of the Renaissance period, with the 1543 Nicolaus Copernicus publication De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) often cited as its beginning.