Survival of the fittest"Survival of the fittest" is a phrase that originated from Darwinian evolutionary theory as a way of describing the mechanism of natural selection. The biological concept of fitness is defined as reproductive success. In Darwinian terms, the phrase is best understood as "Survival of the form that will leave the most copies of itself in successive generations.
Fitness landscapeIn evolutionary biology, fitness landscapes or adaptive landscapes (types of evolutionary landscapes) are used to visualize the relationship between genotypes and reproductive success. It is assumed that every genotype has a well-defined replication rate (often referred to as fitness). This fitness is the "height" of the landscape. Genotypes which are similar are said to be "close" to each other, while those that are very different are "far" from each other.
Balancing selectionBalancing selection refers to a number of selective processes by which multiple alleles (different versions of a gene) are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. It can occur by various mechanisms, in particular, when the heterozygotes for the alleles under consideration have a higher fitness than the homozygote. In this way genetic polymorphism is conserved.
MemeticsMemetics is the study of information and culture based on an analogy with Darwinian evolution. Proponents of memetics, as evolutionary culture, describe it as an approach of cultural information transfer. Those arguing for the Darwinian theoretical account tend to begin from theoretical arguments of existing evolutionary models. Memetics describes how ideas or cultural information can propagate, but doesn't necessarily imply a meme's concept is factual. Critics contend the theory is "untested, unsupported or incorrect".
Neo-DarwinismNeo-Darwinism is generally used to describe any integration of Charles Darwin's theory of evolution by natural selection with Gregor Mendel's theory of genetics. It mostly refers to evolutionary theory from either 1895 (for the combinations of Darwin's and August Weismann's theories of evolution) or 1942 ("modern synthesis"), but it can mean any new Darwinian- and Mendelian-based theory, such as the current evolutionary theory. Darwin's theory of evolution by natural selection, as published in 1859, provided a selection mechanism for evolution, but not a trait transfer mechanism.
Phenotypic plasticityPhenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes (e.g. morphological, physiological, behavioural, phenological) that may or may not be permanent throughout an individual's lifespan.
Transmutation of speciesTransmutation of species and transformism are unproven 18th and 19th-century evolutionary ideas about the change of one species into another that preceded Charles Darwin's theory of natural selection. The French Transformisme was a term used by Jean Baptiste Lamarck in 1809 for his theory, and other 18th and 19th century proponents of pre-Darwinian evolutionary ideas included Denis Diderot, Étienne Geoffroy Saint-Hilaire, Erasmus Darwin, Robert Grant, and Robert Chambers, the anonymous author of the book Vestiges of the Natural History of Creation.
Disruptive selectionDisruptive selection, also called diversifying selection, describes changes in population genetics in which extreme values for a trait are favored over intermediate values. In this case, the variance of the trait increases and the population is divided into two distinct groups. In this more individuals acquire peripheral character value at both ends of the distribution curve. Natural selection is known to be one of the most important biological processes behind evolution.
Inclusive fitnessIn evolutionary biology, inclusive fitness is one of two metrics of evolutionary success as defined by W. D. Hamilton in 1964: Personal fitness is the number of offspring that an individual begets (regardless of who rescues/rears/supports them) Inclusive fitness is the number of offspring equivalents that an individual rears, rescues or otherwise supports through its behaviour (regardless of who begets them) An individual's own child, who carries one half of the individual's genes, is defined as one offspring equivalent.
Linkage disequilibriumIn population genetics, linkage disequilibrium (LD) is the non-random association of alleles at different loci in a given population. Loci are said to be in linkage disequilibrium when the frequency of association of their different alleles is higher or lower than expected if the loci were independent and associated randomly. Linkage disequilibrium is influenced by many factors, including selection, the rate of genetic recombination, mutation rate, genetic drift, the system of mating, population structure, and genetic linkage.