Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes (e.g. morphological, physiological, behavioural, phenological) that may or may not be permanent throughout an individual's lifespan.
The term was originally used to describe developmental effects on morphological characters, but is now more broadly used to describe all phenotypic responses to environmental change, such as acclimation (acclimatization), as well as learning. The special case when differences in environment induce discrete phenotypes is termed polyphenism.
Generally, phenotypic plasticity is more important for immobile organisms (e.g. plants) than mobile organisms (e.g. most animals), as mobile organisms can often move away from unfavourable environments. Nevertheless, mobile organisms also have at least some degree of plasticity in at least some aspects of the phenotype.
One mobile organism with substantial phenotypic plasticity is Acyrthosiphon pisum of the aphid family, which exhibits the ability to interchange between asexual and sexual reproduction, as well as growing wings between generations when plants become too populated.
Water fleas (Daphnia magna) have shown both phenotypic plasticity and the ability to genetically evolve to deal with the heat stress of warmer, urban pond waters.
Phenotypic plasticity in plants includes the timing of transition from vegetative to reproductive growth stage, the allocation of more resources to the roots in soils that contain low concentrations of nutrients, the size of the seeds an individual produces depending on the environment, and the alteration of leaf shape, size, and thickness. Leaves are particularly plastic, and their growth may be altered by light levels. Leaves grown in the light tend to be thicker, which maximizes photosynthesis in direct light; and have a smaller area, which cools the leaf more rapidly (due to a thinner boundary layer).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Evolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of individuals in a population of organisms have responded to natural selection across multiple generations during the history of the population. It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.
In biology, a species (: species) is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.
Ecophysiology (from Greek οἶκος, oikos, "house(hold)"; φύσις, physis, "nature, origin"; and -λογία, -logia), environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.
Explores the genetic mechanisms of retinoblastoma and their clinical implications, shedding light on tumor suppression, DNA repair, and genetic recombination.
Significance: Fluorescence guidance is used clinically by surgeons to visualize anatomical and/or physiological phenomena in the surgical field that are difficult or impossible to detect by the naked eye. Such phenomena include tissue perfusion or molecula ...
BackgroundIt is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid conten ...
In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signa ...