In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any . The way they are put together is specified by a system of homomorphisms (group homomorphism, ring homomorphism, or in general morphisms in the category) between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by . (This is a slight abuse of notation as it suppresses the system of homomorphisms that is crucial for the structure of the limit.)
Direct limits are a special case of the concept of in . Direct limits are to inverse limits, which are also a special case of in category theory.
We will first give the definition for algebraic structures like groups and modules, and then the general definition, which can be used in any .
In this section objects are understood to consist of underlying sets equipped with a given algebraic structure, such as groups, rings, modules (over a fixed ring), algebras (over a fixed field), etc. With this in mind, homomorphisms are understood in the corresponding setting (group homomorphisms, etc.).
Let be a directed set. Let be a family of objects indexed by and be a homomorphism for all with the following properties:
is the identity of , and
for all .
Then the pair is called a direct system over .
The direct limit of the direct system is denoted by and is defined as follows. Its underlying set is the disjoint union of the 's modulo a certain equivalence relation :
Here, if and , then if and only if there is some with and such that .
Intuitively, two elements in the disjoint union are equivalent if and only if they "eventually become equal" in the direct system. An equivalent formulation that highlights the duality to the inverse limit is that an element is equivalent to all its images under the maps of the direct system, i.e. whenever .
One obtains from this definition canonical functions sending each element to its equivalence class.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Covers the concepts of limits and colimits in the category of Topological Spaces, emphasizing the relationship between colimit and limit constructions and adjunctions.
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).
In mathematics, the category of topological spaces, often denoted Top, is the whose s are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the .
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any although their existence depends on the category that is considered. They are a special case of the concept of in category theory. By working in the , that is by reverting the arrows, an inverse limit becomes a direct limit or inductive limit, and a limit becomes a colimit.
This thesis addresses the question of abandonment in architecture, not in its negative sense of desertion, but as a possibility offered to buildings which have lost their original purpose, which is to say those buildings from social and economic contexts w ...
We present polynomial families complete for the well-studied algebraic complexity classes VF, VBP, VP, and VNP. The polynomial families are based on the homomorphism polynomials studied in the recent works of Durand et al. (2014) and Mahajan et al. (2018). ...
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as th ...