Résumé
En mathématiques, et plus particulièrement en théorie des catégories et en algèbre universelle, la notion de limite inductive généralise à des structures la notion classique de limite issue de l'analyse. La limite inductive est un cas particulier de colimite en théorie des catégories. Comme sa duale, la limite projective, elle est conceptuellement très proche de la notion de limite rencontrée en analyse et coïncide avec elle dans certains cas. Un premier point clef est la notion de passage à la limite. Une limite de nombres réels positifs est positive. La limite de la racine carrée est égale à la racine carrée de la limite. De manière analogue, en algèbre, on va chercher quelles sont les propriétés qui passent à la limite (inductive, projective ou autre). Ces propriétés ne seront pas des fonctions comme en analyse, mais des foncteurs. Ainsi, un foncteur covariant compatible avec la limite inductive fera en sorte que la limite inductive des images soit égale à l'image de la limite inductive. (Si le foncteur est contravariant, il transformera une limite inductive en limite projective.) Par exemple, dans la catégorie des modules sur un anneau commutatif A, la limite inductive existe toujours et elle est compatible avec le noyau, l' et le conoyau. Par contre, la limite projective est compatible avec le noyau, mais pas avec l'image. Certaines structures se construisent naturellement par passage à la limite. Pour une extension algébrique infinie, le groupe de Galois peut se définir par limite projective. On obtient ainsi un groupe profini. Un deuxième point clef est la notion de densité. Tout nombre réel est limite de nombres rationnels, et même de nombres décimaux (ce qui est la base de la manipulation des nombres à l'aide des calculatrices). Toute fonction continue définie sur un segment est limite uniforme de fonctions polynomiales, et même de fonctions en escalier. Ce résultat permet par exemple une démonstration fulgurante du théorème de Riemann-Lebesgue. On démontre d'abord le résultat pour les fonctions en escaliers et on passe ensuite à la limite.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.