Concept# Numeral system

Summary

A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.
The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number eleven in the decimal numeral system (today, the most common system globally), the number three in the binary numeral system (used in modern computers), and the number two in the unary numeral system (used in tallying scores).
The number the numeral represents is called its value. Not all number systems can represent the same set of numbers; for example, Roman numerals cannot represent the number zero.
Ideally, a numeral system will:
*Represent a useful set of numbers (e.g. all integers, or rational numbers)
*Give every number represented a unique representation (or at least a standard representation)
*Reflect the algebraic and arithmetic structure of the numbers.
F

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related units

Related people

No results

No results

Related publications (1)

Loading

Related concepts (41)

Positional notation

Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positi

Number

A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words.

Numerical digit

A numerical digit (often shortened to just digit) is a single symbol used alone (such as "1") or in combinations (such as "15"), to represent numbers in a positional numeral system. The name "digit"

From several decades, non-adjacent form (NAF) representations for integers have been extensively studied as an alternative to the usual binary number system where digits are in {0,1}. In cryptography, the non-adjacent digit set (NADS) {-1,0,1} is used for optimization of arithmetic operations in elliptic curves. At SAC 2003, Muir and Stinson published new results on alternative digit sets: they proposed infinite families of integers x such that {0,1,x} is a NADS as well as infinite families of integers x such that {0,1,x} is not a NADS, so called a NON-NADS. Muir and Stinson also provided an algorithm that determines whether x leads to a NADS by checking if every integer n in [0, [-x/3]] has a {0,1,x}-NAF. In this paper, we extend these results by providing generators of NON-NADS infinite families. Furthermore, we reduce the search bound from [-x/3] to [-x/12]. We introduce the notion of worst NON-NADS and give the complete characterization of such sets. Beyond the theoretical results, our contribution also aims at exploring some algorithmic aspects. We supply a much more efficient algorithm than those proposed by Muir and Stinson, which takes only 343 seconds to compute all x's from 0 to -10^7 such that {0,1,x} is a NADS.

2004Related courses (6)

The goal is to familiarize the students with the hardware components of computing systems, and to teach the modern methods of analysis and synthesis of combinational and sequential systems, with the assistance of high-level languages such as VHDL.

Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de synthèse de systèmelogiques sont étudiées et appliquée

Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

Related lectures (9)