Tychonoff spaceIn topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Tychonoff spaces are named after Andrey Nikolayevich Tychonoff, whose Russian name (Тихонов) is variously rendered as "Tychonov", "Tikhonov", "Tihonov", "Tichonov", etc.
Contractible spaceIn mathematics, a topological space X is contractible if the identity map on X is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space. A contractible space is precisely one with the homotopy type of a point. It follows that all the homotopy groups of a contractible space are trivial. Therefore any space with a nontrivial homotopy group cannot be contractible.
Homology sphereIn algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is, and for all other i. Therefore X is a connected space, with one non-zero higher Betti number, namely, . It does not follow that X is simply connected, only that its fundamental group is perfect (see Hurewicz theorem). A rational homology sphere is defined similarly but using homology with rational coefficients.
Compactly generated spaceIn topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom (like Hausdorff space or weak Hausdorff space) in the definition of one or both terms, and others don't.
Locally compact spaceIn topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Let X be a topological space. Most commonly X is called locally compact if every point x of X has a compact neighbourhood, i.
Metrizable spaceIn topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and first-countable.
Differential structureIn mathematics, an n-dimensional differential structure (or differentiable structure) on a set M makes M into an n-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If M is already a topological manifold, it is required that the new topology be identical to the existing one.
Separable spaceIn mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense.
Open and closed mapsIn mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa. Open and closed maps are not necessarily continuous.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).