Concept

Closure (topology)

In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior. Adherent point For as a subset of a Euclidean space, is a point of closure of if every open ball centered at contains a point of (this point can be itself). This definition generalizes to any subset of a metric space Fully expressed, for as a metric space with metric is a point of closure of if for every there exists some such that the distance ( is allowed). Another way to express this is to say that is a point of closure of if the distance where is the infimum. This definition generalizes to topological spaces by replacing "open ball" or "ball" with "neighbourhood". Let be a subset of a topological space Then is a or of if every neighbourhood of contains a point of (again, for is allowed). Note that this definition does not depend upon whether neighbourhoods are required to be open. Limit point of a set The definition of a point of closure of a set is closely related to the definition of a limit point of a set. The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of , i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to in order for to be a limit point of . A limit point of has more strict condition than a point of closure of in the definitions. The set of all limit points of a set is called the . A limit point of a set is also called cluster point or accumulation point of the set. Thus, every limit point is a point of closure, but not every point of closure is a limit point.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.