Boundary (topology)In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors (for example Willard, in General Topology) use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds.
Pathological (mathematics)In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved. These terms are sometimes useful in mathematical research and teaching, but there is no strict mathematical definition of pathological or well-behaved. A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere.
N-sphereIn mathematics, an n-sphere or a hypersphere is a topological space that is homeomorphic to a standard n-sphere, which is the set of points in (n + 1)-dimensional Euclidean space that are situated at a constant distance r from a fixed point, called the center. It is the generalization of an ordinary sphere in the ordinary three-dimensional space. The "radius" of a sphere is the constant distance of its points to the center. When the sphere has unit radius, it is usual to call it the unit n-sphere or simply the n-sphere for brevity.
Real projective spaceIn mathematics, real projective space, denoted \mathbb{RP}^n or \mathbb{P}_n(\R), is the topological space of lines passing through the origin 0 in the real space \R^{n+1}. It is a compact, smooth manifold of dimension n, and is a special case \mathbf{Gr}(1, \R^{n+1}) of a Grassmannian space. As with all projective spaces, RPn is formed by taking the quotient of Rn+1 ∖ under the equivalence relation x ∼ λx for all real numbers λ ≠ 0. For all x in Rn+1 ∖ one can always find a λ such that λx has norm 1.
Locally connected spaceIn topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space.
Geometrization conjectureIn mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space.
Mapping class groupIn mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Consider a topological space, that is, a space with some notion of closeness between points in the space. We can consider the set of homeomorphisms from the space into itself, that is, continuous maps with continuous inverses: functions which stretch and deform the space continuously without breaking or gluing the space.
Atlas (topology)In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an atlas has its more common meaning. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles. Topological manifold#Coordinate charts The definition of an atlas depends on the notion of a chart.
Non-Hausdorff manifoldIn geometry and topology, it is a usual axiom of a manifold to be a Hausdorff space. In general topology, this axiom is relaxed, and one studies non-Hausdorff manifolds: spaces locally homeomorphic to Euclidean space, but not necessarily Hausdorff. The most familiar non-Hausdorff manifold is the line with two origins, or bug-eyed line. This is the quotient space of two copies of the real line with the equivalence relation This space has a single point for each nonzero real number and two points and A local base of open neighborhoods of in this space can be thought to consist of sets of the form where is any positive real number.
Donaldson's theoremIn mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the . The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.