In animal communication, an alarm signal is an antipredator adaptation in the form of signals emitted by social animals in response to danger. Many primates and birds have elaborate alarm calls for warning conspecifics of approaching predators. For example, the alarm call of the blackbird is a familiar sound in many gardens. Other animals, like fish and insects, may use non-auditory signals, such as chemical messages. Visual signs such as the white tail flashes of many deer have been suggested as alarm signals; they are less likely to be received by conspecifics, so have tended to be treated as a signal to the predator instead.
Different calls may be used for predators on the ground or from the air. Often, the animals can tell which member of the group is making the call, so that they can disregard those of little reliability.
Evidently, alarm signals promote survival by allowing the receivers of the alarm to escape from the source of peril; this can evolve by kin selection, assuming the receivers are related to the signaller. However, alarm calls can increase individual fitness, for example by informing the predator it has been detected.
Alarm calls are often high-frequency sounds because these sounds are harder to localize.
Signalling theory
This cost/benefit tradeoff of alarm calling behaviour has sparked many interest debates among evolutionary biologists seeking to explain the occurrence of such apparently "self-sacrificing" behaviour. The central question is this: "If the ultimate purpose of any animal behaviour is to maximize the chances that an organism's own genes are passed on, with maximum fruitfulness, to future generations, why would an individual deliberately risk destroying itself (their entire genome) for the sake of saving others (other genomes)?".
Some scientists have used the evidence of alarm-calling behaviour to challenge the theory that "evolution works only/primarily at the level of the gene and of the gene's 'interest' in passing itself along to future generations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mobbing in animals is an antipredator adaptation in which individuals of prey species mob a predator by cooperatively attacking or harassing it, usually to protect their offspring. A simple definition of mobbing is an assemblage of individuals around a potentially dangerous predator. This is most frequently seen in birds, though it is also known to occur in many other animals such as the meerkat and some bovines. While mobbing has evolved independently in many species, it only tends to be present in those whose young are frequently preyed upon.
Bird vocalization includes both bird calls and bird songs. In non-technical use, bird songs are the bird sounds that are melodious to the human ear. In ornithology and birding, songs (relatively complex vocalizations) are distinguished by function from calls (relatively simple vocalizations). The distinction between songs and calls is based upon complexity, length, and context. Songs are longer and more complex and are associated with territory and courtship and mating, while calls tend to serve such functions as alarms or keeping members of a flock in contact.
Aposematism is the advertising by an animal to potential predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the prey difficult to kill and eat, such as toxicity, venom, foul taste or smell, sharp spines, or aggressive nature. These advertising signals may take the form of conspicuous coloration, sounds, odours, or other perceivable characteristics. Aposematic signals are beneficial for both predator and prey, since both avoid potential harm.
Recognizing eye movements is important for gaze behavior understanding like in human communication analysis (human-human or robot interactions) or for diagnosis (medical, reading impairments). In this paper, we address this task using remote RGB-D sensors ...
ACM2019
,
Self-supervised learning (SSL) models use only the intrinsic structure of a given signal, independent of its acoustic domain, to extract essential information from the input to an embedding space. This implies that the utility of such representations is no ...
Freshwater ecosystems are endangered, underfunded and understudied, making new methods such as passive acoustic monitoring (PAM) essential for improving the efficiency and effectiveness of data collection. However, many challenges are still to be addressed ...