Summary
Leptin (from Greek λεπτός leptos, "thin" or "light" or "small") is a protein hormone predominantly made by adipose cells and its primary role is likely to regulate long-term energy balance. As one of the major signals of energy status, leptin levels influence appetite, satiety, and motivated behaviors oriented towards the maintenance of energy reserves (e.g., feeding, foraging behaviors). The amount of circulating leptin correlates with the amount of energy reserves, mainly triglycerides stored in adipose tissue. High leptin levels are interpreted by the brain that energy reserves are high, whereas low leptin levels indicate that energy reserves are low, in the process adapting the organism to starvation through a variety of metabolic, endocrine, neurobiochemical, and behavioral changes. Leptin is coded for by the LEP gene. Leptin receptors are expressed by a variety of brain and peripheral cell types. These include cell receptors in the arcuate and ventromedial nuclei, as well as other parts of the hypothalamus and dopaminergic neurons of the ventral tegmental area, consequently mediating feeding. Although regulation of fat stores is deemed to be the primary function of leptin, it also plays a role in other physiological processes, as evidenced by its many sites of synthesis other than fat cells, and the many cell types beyond hypothalamic cells that have leptin receptors. Many of these additional functions are yet to be fully defined. In obesity, a decreased sensitivity to leptin occurs (similar to insulin resistance in type 2 diabetes), resulting in an inability to detect satiety despite high energy stores and high levels of leptin. A synonym for LEP is OB (for obese). Leptin receptor and Energy expenditure Predominantly, the "energy expenditure hormone" leptin is made by adipose cells, and is thus labeled fat cell-specific. In the context of its effects, the short describing words central, direct and primary are not used interchangeably.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)

Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats

Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually d
Public Library of Science2015

Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons

David Genoux

The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregul
2010
Related people (1)
Related concepts (77)
Adipose tissue
Adipose tissue, body fat, or simply fat is a loose connective tissue composed mostly of adipocytes. In addition to adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and a variety of immune cells such as adipose tissue macrophages. Adipose tissue is derived from preadipocytes. Its main role is to store energy in the form of lipids, although it also cushions and insulates the body.
Appetite
Appetite is the desire to eat food items, usually due to hunger. Appealing foods can stimulate appetite even when hunger is absent, although appetite can be greatly reduced by satiety. Appetite exists in all higher life-forms, and serves to regulate adequate energy intake to maintain metabolic needs. It is regulated by a close interplay between the digestive tract, adipose tissue and the brain. Appetite has a relationship with every individual's behavior.
Leptin
Leptin (from Greek λεπτός leptos, "thin" or "light" or "small") is a protein hormone predominantly made by adipose cells and its primary role is likely to regulate long-term energy balance. As one of the major signals of energy status, leptin levels influence appetite, satiety, and motivated behaviors oriented towards the maintenance of energy reserves (e.g., feeding, foraging behaviors). The amount of circulating leptin correlates with the amount of energy reserves, mainly triglycerides stored in adipose tissue.
Show more
Related courses (2)
BIO-109: Introduction to life sciences (for IC)
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Related lectures (15)
Obesity and Metabolic Syndrome
Explores the definition of obesity, trends in US adults, lifestyle changes, central vs peripheral obesity, metabolic syndrome, and insulin resistance.
Adipocytes and Leptin Regulation
Explores the evolution and functions of adipocytes, the production and effects of leptin, and the regulation of food intake.
Groupes résolubles
Explores solvable groups, group actions, normalizers, and stabilizers in group theory.
Show more