Donald KnuthDonald Ervin Knuth (kəˈnuːθ ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer science. Knuth has been called the "father of the analysis of algorithms". He is the author of the multi-volume work The Art of Computer Programming and contributed to the development of the rigorous analysis of the computational complexity of algorithms and systematized formal mathematical techniques for it.
Algebraic numberAn algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x^2 − x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x^4 + 4. All integers and rational numbers are algebraic, as are all roots of integers.
Enrico BombieriEnrico Bombieri (born 26 November 1940) is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently Professor Emeritus in the School of Mathematics at the Institute for Advanced Study in Princeton, New Jersey. Bombieri won the Fields Medal in 1974 for his contributions to large sieve mathematics, conceptualized by Linnick 1941, and its application to the distribution of prime numbers.
Carl Friedrich GaussJohann Carl Friedrich Gauss (Gauß kaʁl ˈfʁiːdʁɪç ˈɡaʊs; Carolus Fridericus Gauss; 30 April 1777 23 February 1855) was a German mathematician, geodesist, and physicist who made significant contributions to many fields in mathematics and science. Gauss ranks among history's most influential mathematicians. Gauss was a child prodigy in mathematics, attended Collegium Carolinum, and, while studying at the University of Göttingen, made several important mathematical discoveries.
Christian GoldbachChristian Goldbach (ˈɡoʊldbɑːk; ˈɡɔltbax; 18 March 1690 – 20 November 1764) was a Prussian mathematician connected with some important research mainly in number theory; he also studied law and took an interest in and a role in the Russian court. After traveling around Europe in his early life, he landed in Russia in 1725 as a professor at the newly founded Saint Petersburg Academy of Sciences. Goldbach jointly led the Academy in 1737. However, he relinquished duties in the Academy in 1742 and worked in the Russian Ministry of Foreign Affairs until his death in 1764.
André WeilAndré Weil ('veɪ; ɑ̃dʁe vɛj; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is due both to his original contributions to a remarkably broad spectrum of mathematical theories, and to the mark he left on mathematical practice and style, through some of his own works as well as through the Bourbaki group, of which he was one of the principal founders.
ArithmeticArithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today.
Field extensionIn mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry.
DiophantusDiophantus of Alexandria (born AD 200-214; died AD 284-298) was a Greek mathematician, who was the author of a series of books called Arithmetica, many of which are now lost. His texts deal with solving algebraic equations. Diophantine equations, Diophantine geometry, and Diophantine approximations are subareas of Number theory that are named after him. Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality.
Algebraic geometryAlgebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.