Diophantus of Alexandria (born AD 200-214; died AD 284-298) was a Greek mathematician, who was the author of a series of books called Arithmetica, many of which are now lost. His texts deal with solving algebraic equations.
Diophantine equations, Diophantine geometry, and Diophantine approximations are subareas of Number theory that are named after him.
Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality. This term was rendered as adaequalitas in Latin, and became the technique of adequality developed by Pierre de Fermat to find maxima for functions and tangent lines to curves.
Diophantus was the first Greek mathematician who recognized positive rational numbers as numbers, by allowing fractions for coefficients and solutions. In modern use, Diophantine equations are algebraic equations with integer coefficients, for which integer solutions are sought.
Little is known about the life of Diophantus. He lived in Alexandria, Egypt, during the Roman era, probably from between AD 200 and 214 to 284 or 298. Diophantus has variously been described by historians as either Greek, or possibly Hellenized Egyptian, or Hellenized Babylonian, The last two of these identifications may stem from confusion with the 4th-century rhetorician Diophantus the Arab. Much of our knowledge of the life of Diophantus is derived from a 5th-century Greek anthology of number games and puzzles created by Metrodorus. One of the problems (sometimes called his epitaph) states:
'Here lies Diophantus,' the wonder behold.
Through art algebraic, the stone tells how old:
'God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The main theme in Diopahntine approximation is to approximate a real number by a rational number with a certain denominator bound. The course covers the case of one real number, that is classical and
Covers the design of polynomial regulators using the RST method.
Covers a general introduction and discusses algebra, emphasizing the importance of unique factorization in algebraic structures.
Explores eigenvalues and eigenvectors, demonstrating their importance in linear algebra and their application in solving systems of equations.
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them.
Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
In algebra, a quadratic equation () is any equation that can be rearranged in standard form as where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.) The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.
In periodic scheduling jobs arrive regularly and have to be executed on one or several machines or processors. An enormous amount of literature has been published on this topic, e.g. the founding work of Liu & Layland [LL73] is among the top cited computer ...
EPFL2009
The polynomial Hirsch conjecture states that the vertex-edge diameter of a d-dimensional polyhedron with n facets is bounded by a polynomial in d and n. For the special case where the polyhedron is defined as the set of points satisfying a system Ax ≤ b of ...