A detention basin or retarding basin is an excavated area installed on, or adjacent to, tributaries of rivers, streams, lakes or bays to protect against flooding and, in some cases, downstream erosion by storing water for a limited period of time. These basins are also called dry ponds, holding ponds or dry detention basins if no permanent pool of water exists.
Detention ponds that are designed to permanently retain some volume of water at all times are called retention basins. In its basic form, a detention basin is used to manage water quantity while having a limited effectiveness in protecting water quality, unless it includes a permanent pool feature.
Detention basins are storm water best management practices that provide general flood protection and can also control extreme floods such as a 1 in 100-year storm event. The basins are typically built during the construction of new land development projects including residential subdivisions or shopping centers. The ponds help manage the excess urban runoff generated by newly constructed impervious surfaces such as roads, parking lots and rooftops.
A basin functions by allowing large flows of water to enter but limits the outflow by having a small opening at the lowest point of the structure. The size of this opening is determined by the capacity of underground and downstream culverts and washes to handle the release of the contained water.
Frequently the inflow area is constructed to protect the structure from some types of damage. Offset concrete blocks in the entrance spillways are used to reduce the speed of entering flood water. These structures may also have debris drop vaults to collect large rocks. These vaults are deep holes under the entrance to the structure. The holes are wide enough to allow large rocks and other debris to fall into the holes before they can damage the rest of the structure. These vaults must be emptied after each storm event.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les aménagements hydrauliques sont indispensable pour garantir l'approvisionnement en énergie écophile et renouvelable, de même que l'approvisionnement en eau de bonne qualité et en quantité suffisant
Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces (roads, parking lots and sidewalks) are constructed during land development. During rain, storms, and other precipitation events, these surfaces (built from materials such as asphalt and concrete), along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil.
Green infrastructure or blue-green infrastructure refers to a network that provides the “ingredients” for solving urban and climatic challenges by building with nature. The main components of this approach include stormwater management, climate adaptation, the reduction of heat stress, increasing biodiversity, food production, better air quality, sustainable energy production, clean water, and healthy soils, as well as more anthropocentric functions, such as increased quality of life through recreation and the provision of shade and shelter in and around towns and cities.
Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface. Groundwater recharge also encompasses water moving away from the water table farther into the saturated zone. Recharge occurs both naturally (through the water cycle) and through anthropogenic processes (i.
Explores flood protection measures through a case study on the Mebre-Sorge rivers, emphasizing the importance of retention basins and control structures in mitigating flood risks.
Explores urban water management, emphasizing basin design, biodiversity preservation, and sustainable development in urban areas.
Covers the design of a detention basin to protect a damage center from large floods.
River networks play a crucial role in the global carbon cycle, as relevant sources of carbon dioxide (CO2) to the atmosphere. Advancements in high-frequency monitoring in aquatic environments have enabled measurement of dissolved CO2 concentration at tempo ...
In the canton of Bern, Switzerland, the “Le Bez” torrent is known for its flash floods, causing sediment and wood debris buildup in Villeret village settled on the alluvial fan. To mitigate this issue, a sediment/wood trap system is being implemented upstr ...
Swiss Academy of Sciences (SCNAT)2023
,
Allometric scaling relations are widely used to link biological processes in nature. They are typically expressed as power laws, postulating that the metabolic rate of an organism scales as its mass to the power of an allometric exponent, which ranges betw ...