A single-event upset (SEU), also known as a single-event error (SEE), is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a live micro-electronic device, such as in a microprocessor, semiconductor memory, or power transistors. The state change is a result of the free charge created by ionization in or close to an important node of a logic element (e.g. memory "bit"). The error in device output or operation caused as a result of the strike is called an SEU or a soft error.
The SEU itself is not considered permanently damaging to the transistor's or circuits' functionality unlike the case of single-event latch-up (SEL), single-event gate rupture (SEGR), or single-event burnout (SEB). These are all examples of a general class of radiation effects in electronic devices called single-event effects (SEEs).
Single-event upsets were first described during above-ground nuclear testing, from 1954 to 1957, when many anomalies were observed in electronic monitoring equipment. Further problems were observed in space electronics during the 1960s, although it was difficult to separate soft failures from other forms of interference. In 1972, a Hughes satellite experienced an upset where the communication with the satellite was lost for 96 seconds and then recaptured. Scientists Dr. Edward C. Smith, Al Holman, and Dr. Dan Binder explained the anomaly as a single-event upset (SEU) and published the first SEU paper in the IEEE Transactions on Nuclear Science journal in 1975. In 1978, the first evidence of soft errors from alpha particles in packaging materials was described by Timothy C. May and M.H. Woods. In 1979, James Ziegler of IBM, along with W. Lanford of Yale, first described the mechanism whereby a sea-level cosmic ray could cause a single-event upset in electronics. 1979 also saw the world’s first heavy ion "single-event effects" test at a particle accelerator facility, conducted at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron and Bevatron.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course presents and analyses the different systems, architectures and components of spacecraft avionics (on board data handling and processing systems) controlling and commanding spacecraft and pa
This course introduces the analysis and design of linear analog circuits based on operational amplifiers. A Laplace early approach is chosen to treat important concepts such as time and frequency resp
In electronics and computing, a soft error is a type of error where a signal or datum is wrong. Errors may be caused by a defect, usually understood either to be a mistake in design or construction, or a broken component. A soft error is also a signal or datum which is wrong, but is not assumed to imply such a mistake or breakage. After observing a soft error, there is no implication that the system is any less reliable than before. One cause of soft errors is single event upsets from cosmic rays.
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation (particle radiation and high-energy electromagnetic radiation), especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
Dual-channel gate driver is commonly utilized in the industry for accommodating the widespread use of half-bridge power modules. As wide-bandgap devices become increasingly prevalent due to their superior switching characteristics compared with conventiona ...
The versatility of half-bridge configuration of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) power module contributes to its widespread adoption, highlighting the popularity and significance of its corresponding dual gat ...
With the increasing capabilities of the microelectronics technology, future particle detectors in high energy physics will be able to yield high-level features that are not only simple geometrical positions or energy measurement in the silicon sensors used ...