Summary
Non-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight (also NLOS) conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone. Obstacles that commonly cause NLOS propagation include buildings, trees, hills, mountains, and, in some cases, high voltage electric power lines. Some of these obstructions reflect certain radio frequencies, while some simply absorb or garble the signals; but, in either case, they limit the use of many types of radio transmissions, especially when low on power budget. Lower power levels at a receiver reduce the chance of successfully receiving a transmission. Low levels can be caused by at least three basic reasons: low transmit level, for example Wi-Fi power levels; far-away transmitter, such as 3G more than away or TV more than away; and obstruction between the transmitter and the receiver, leaving no clear path. NLOS lowers the effective received power. Near Line Of Sight can usually be dealt with using better antennas, but Non Line Of Sight usually requires alternative paths or multipath propagation methods. How to achieve effective NLOS networking has become one of the major questions of modern computer networking. Currently, the most common method for dealing with NLOS conditions on wireless computer networks is simply to circumvent the NLOS condition and place relays at additional locations, sending the content of the radio transmission around the obstructions. Some more advanced NLOS transmission schemes now use multipath signal propagation, bouncing the radio signal off other nearby objects to get to the receiver. Non-Line-of-Sight (NLOS) is a term often used in radio communications to describe a radio channel or link where there is no visual line of sight (LOS) between the transmitting antenna and the receiving antenna. In this context LOS is taken Either as a straight line free of any form of visual obstruction, even if it is actually too distant to see with the unaided human eye As a virtual LOS i.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
EE-345: Radiation and antennas
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
EE-445: Microwaves, the basics of wireless communications
This course is an introduction to microwaves and microwave passive circuits. A special attention is given to the introduction of the notion of distributed circuits and to the scattering matrix
ME-390: Foundations of artificial intelligence
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
Show more
Related lectures (23)
Deep Learning Fundamentals
Introduces deep learning, from logistic regression to neural networks, emphasizing the need for handling non-linearly separable data.
Backpropagation and Neural Networks
Covers the backpropagation algorithm for training neural networks and the representation of functions in multilayer networks.
Galilean Transformation: Examples
Covers the Galilean transformation with examples of uniform circular motion and airplane motion with lateral wind.
Show more
Related publications (72)