Codon usage bias refers to differences in the frequency of occurrence of synonymous codons in coding DNA. A codon is a series of three nucleotides (a triplet) that encodes a specific amino acid residue in a polypeptide chain or for the termination of translation (stop codons).
There are 64 different codons (61 codons encoding for amino acids and 3 stop codons) but only 20 different translated amino acids. The overabundance in the number of codons allows many amino acids to be encoded by more than one codon. Because of such redundancy it is said that the genetic code is degenerate. The genetic codes of different organisms are often biased towards using one of the several codons that encode the same amino acid over the others—that is, a greater frequency of one will be found than expected by chance. How such biases arise is a much debated area of molecular evolution. Codon usage tables detailing genomic codon usage bias for organisms in GenBank and RefSeq can be found in the HIVE-Codon Usage Tables (HIVE-CUTs) project, which contains two distinct databases, CoCoPUTs and TissueCoCoPUTs. Together, these two databases provide comprehensive, up-to-date codon, codon pair and dinucleotide usage statistics for all organisms with available sequence information and 52 human tissues, respectively.
It is generally acknowledged that codon biases reflect a balance between mutational biases and natural selection (mutation–selection balance) for translational optimization. Optimal codons in fast-growing microorganisms, like Escherichia coli or Saccharomyces cerevisiae (baker's yeast), reflect the composition of their respective genomic transfer RNA (tRNA) pool. It is thought that optimal codons help to achieve faster translation rates and high accuracy. As a result of these factors, translational selection is expected to be stronger in highly expressed genes, as is indeed the case for the above-mentioned organisms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.
Students will acquire fundamental knowledge regarding how genomes can be engineered, how their function can be deciphered, and how their dynamic outputs can be analyzed and modeled.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
In evolutionary biology, conserved sequences are identical or similar sequences in nucleic acids (DNA and RNA) or proteins across species (orthologous sequences), or within a genome (paralogous sequences), or between donor and receptor taxa (xenologous sequences). Conservation indicates that a sequence has been maintained by natural selection. A highly conserved sequence is one that has remained relatively unchanged far back up the phylogenetic tree, and hence far back in geological time.
A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the phenotype of an organism. Transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism.
A prokaryote (pɹoʊˈkærioʊt,_-ət) is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel'). In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria (formerly Eubacteria) and Archaea (formerly Archaebacteria).
En 2019, les habitants d’une barre d’immeubles située à la Servette, un quartier populaire de Genève, ont dû évacuer d’urgence à cause d’un risque d’effondrement. Le bâtiment à usage mixte abritait plusieurs commerces, dont quelques grandes enseignes. La d ...
La prison du Bois-Mermet, considérée comme le dernier exemple de prison de district encore en fonction, est amenée à être désaffectée d’ici 2025. Autrefois localisée en périphérie de la ville de Lausanne, elle est aujourd’hui située au cœur du quartier en ...
2022
Global change exposes ecosystems to changes in the frequency, magnitude, and concomitancy of disturbances, which impact the composition and functioning of these systems. Here, we experimentally evaluate the effects of salinity disturbances and eutrophicati ...