Concept

L-form bacteria

L-form bacteria, also known as L-phase bacteria, L-phase variants or cell wall-deficient (CWD) bacteria, are growth forms derived from different bacteria. They lack cell walls. Two types of L-forms are distinguished: unstable L-forms, spheroplasts that are capable of dividing, but can revert to the original morphology, and stable L-forms, L-forms that are unable to revert to the original bacteria. L-form bacteria were first isolated in 1935 by Emmy Klieneberger-Nobel, who named them "L-forms" after the Lister Institute in London where she was working. She first interpreted these growth forms as symbionts related to pleuropneumonia-like organisms (PPLOs, later commonly called mycoplasmas). Mycoplasmas (now in scientific classification called Mollicutes), parasitic or saprotrophic species of bacteria, also lack a cell wall (peptidoglycan/murein is absent). Morphologically, they resemble L-form bacteria. Therefore, mycoplasmas formerly were sometimes considered stable L-forms or, because of their small size, even viruses, but phylogenetic analysis has identified them as bacteria that have lost their cell walls in the course of evolution. Both, mycoplasmas and L-form bacteria are resistant against penicillin. After the discovery of PPLOs (mycoplasmas/Mollicutes) and L-form bacteria, their mode of reproduction (proliferation) became a major subject of discussion. In 1954, using phase-contrast microscopy, continual observations of live cells have shown that L-form bacteria (previously also called L-phase bacteria) and pleuropneumonia-like organisms (PPLOs, now mycoplasmas/Mollicutes) ) do not proliferate by binary fission, but by a uni- or multi-polar budding mechanism. Microphotograph series of growing microcultures of different strains of L-form bacteria, PPLOs and, as a control, a Micrococcus species (dividing by binary fission) have been presented. Additionally, electron microscopic studies have been performed. Bacterial morphology is determined by the cell wall.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (12)
Mechanobiology of Cell Growth
Explores the mechanobiology of cell growth, focusing on essential components, force curve-based sample characterization, and the impact of turgor pressure on growth.
Cell Surface and Envelope: Microscopy and Cell Wall Structure
Explores microscopy, cell surface structures, and bacterial cell walls.
Wood Chemistry: Structure, Composition, and Interactions
Delves into the chemistry of wood components like Cellulose, Hemicellulose, and Lignin.
Show more
Related publications (69)

Resolving bacterial cell biology: from replisome dynamics to cell wall synthesis

Chen Zhang

Bacteria are ubiquitous single cellular organisms. Compared to eukaryotic cells, bacteria have two unique characteristics: the membrane-less nucleoid and the cell wall built of peptidoglycan (PG). In most bacteria, a single circular chromosome is compacted ...
EPFL2024

Bacterial colonization in realistic environments: how mechanics impact biofilm formation in the wild and during infection

Tamara Rossy

A variety of physical inputs acts onto bacteria in nature. However, these are most often ignored in the studies of their physiology. There is now increasing evidence indicating that bacteria respond to physical stimuli, including mechanical forces. Yet, qu ...
EPFL2023

Fluorescent D-Amino Acids for Super-resolution Microscopy of the Bacterial Cell Wall

Suliana Manley, Luc Reymond, Chen Zhang, Ophélie Rutschmann, Willi Leopold Stepp, Faustine Ambroisine Charline Ryckebusch, Juliette Griffie, Jiangtao Qiao

Fluorescent D-amino acids (FDAAs) have previ-ously been developed to enable in situ highlighting of locations of bacterial cell wall growth. Most bacterial cells lie at the edge of the diffraction limit of visible light; thus, resolving the precise details ...
AMER CHEMICAL SOC2022
Show more
Related concepts (4)
Spheroplast
A spheroplast (or sphaeroplast in British usage) is a microbial cell from which the cell wall has been almost completely removed, as by the action of penicillin or lysozyme. According to some definitions, the term is used to describe Gram-negative bacteria. According to other definitions, the term also encompasses yeasts. The name spheroplast stems from the fact that after the microbe's cell wall is digested, membrane tension causes the cell to acquire a characteristic spherical shape.
Protoplast
Protoplast (), is a biological term coined by Hanstein in 1880 to refer to the entire cell, excluding the cell wall. Protoplasts can be generated by stripping the cell wall from plant, bacterial, or fungal cells by mechanical, chemical or enzymatic means. Protoplasts differ from spheroplasts in that their cell wall has been completely removed. Spheroplasts retain part of their cell wall. In the case of Gram-negative bacterial spheroplasts, for example, the peptidoglycan component of the cell wall has been removed but the outer membrane component has not.
Bacterial cell structure
The bacterium, despite its simplicity, contains a well-developed cell structure which is responsible for some of its unique biological structures and pathogenicity. Many structural features are unique to bacteria and are not found among archaea or eukaryotes. Because of the simplicity of bacteria relative to larger organisms and the ease with which they can be manipulated experimentally, the cell structure of bacteria has been well studied, revealing many biochemical principles that have been subsequently applied to other organisms.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.