The green sulfur bacteria, Chlorobiota, are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur.
Green sulfur bacteria are nonmotile (except Chloroherpeton thalassium, which may glide) and capable of anoxygenic photosynthesis. They live in anaerobic aquatic environments. In contrast to plants, green sulfur bacteria mainly use sulfide ions as electron donors. They are autotrophs that utilize the reverse tricarboxylic acid cycle to perform carbon fixation. They are also mixotrophs and reduce nitrogen.
Green sulfur bacteria are gram-negative rod or spherical shaped bacteria. Some types of green sulfur bacteria have gas vacuoles that allow for movement. They are photolithoautotrophs, and use light energy and reduced sulfur compounds as the electron source. Electron donors include H2, H2S, S. The major photosynthetic pigment in these bacteria is Bacteriochlorophylls c or d in green species and e in brown species, and is located in the chlorosomes and plasma membranes. Chlorosomes are a unique feature that allow them to capture light in low-light conditions.
The majority of green sulfur bacteria are mesophilic, preferring moderate temperatures, and all live in aquatic environments. They require anaerobic conditions and reduced sulfur; they are usually found in the top millimeters of sediment. They are capable of photosynthesis in low light conditions.
The Black Sea, an extremely anoxic environment, was found to house a large population of green sulfur bacteria at about 100 m depth. Due to the lack of light available in this region of the sea, most bacteria were photosynthetically inactive. The photosynthetic activity detected in the sulfide chemocline suggests that the bacteria need very little energy for cellular maintenance.
A species of green sulfur bacteria has been found living near a black smoker off the coast of Mexico at a depth of 2,500 m in the Pacific Ocean. At this depth, the bacterium, designated GSB1, lives off the dim glow of the thermal vent since no sunlight can penetrate to that depth.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Bacteria (bækˈtɪəriə; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere.
Phototrophs () are organisms that carry out photon capture to produce complex organic compounds (e.g. carbohydrates) and acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later catabolic processes (e.g.
A thermophile is an organism—a type of extremophile—that thrives at relatively high temperatures, between . Many thermophiles are archaea, though some of them are bacteria and fungi. Thermophilic eubacteria are suggested to have been among the earliest bacteria. Thermophiles are found in various geothermally heated regions of the Earth, such as hot springs like those in Yellowstone National Park (see image) and deep sea hydrothermal vents, as well as decaying plant matter, such as peat bogs and compost.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
The present study aimed to fill the knowledge gap between the implications of intracellular and extracellular antibiotic resistance mechanisms may inflict on the inactivation pathways of the photo-Fenton process under mild conditions. It was thus designed ...
London2024
, , , , ,
At the center of microbial bioelectricity applications lies the critical need to express foreign heme proteins that are capable of redirecting the electron flux of the cell’s metabolism. This study presents bioengineered Synechocystis sp. PCC 6803 cells ca ...
2023
Meromictic Lake Cadagno is a permanently stratified system with a persistent microbial bloom within the oxic-anoxic boundary called the chemocline. The association between oxygenic and anoxygenic photosynthesis within the chemocline has been known for at l ...